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sin2φ 1=0.667±0.023±0.012 
 Af=0.006±0.016±0.012 
PRL108,171802 (2012) 

sin2φ1=0.687±0.028±0.012 
 Af=-0.024±0.020±0.016 
PRD79,072009 (2009) 

(cc)KS 

J/ψKL 

Measurement of sin(2φ1)/sin(2β) in BCharmonium K0 modes 

J/ψKL J/ψKS 

0B 0B

1x = - 1x = +

Overpowering evidence for CP violation (matter-antimatter 
asymmetries).  >>>> The phase of Vtd is  in good agreement with 
Standard Model expectations. This is the phase of Bd mixing. 
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Trailokya (Sanskrit: त्रलैोक्य; Pali: tiloka, Wylie: khams gsum) has 
been translated as "three worlds,"[1][2][3][4][5] "three 

spheres,"[3] "three planes of existence,"[6] "three realms"[6] and 
"three regions."[4] These three worlds are identified in Hinduism 

and appear in early Buddhist texts. 
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3 options: 2^3 Combinations (8) 
 

My difficulty 
(1) Null set 
(3) Focus 

(3) Mix of 2 
(1) Overview of each 



The canonical example: HL-LHC 
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Low-Gain Avalanche Detectors (LGAD)  

Manufacturers of LGAD (30 µm – 300 µm): 
CNM Barcelona (RD50, ATLAS-HGTD)  
HPK Hamamatsu 
FBK Trento (INFN) 
 
very similar behavior with exception of 
breakdown voltage and special design 
features . 

Principle: 
Add to n-on-p Silicon sensor an extra 
thin p-layer below th junction which  
increases the E-field so that charge 
multiplication with moderate gain of 10-
50 occurs without breakdown. 
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High Doping Concentration: High Field 

50µm 

50µm 

35µm 



“Beam test results of a 16 ps UFSD timing system” 

Timing resolution vs. # of UFSD averaged 
• Good matching of three LGAD  
• Time resolution of single UFSD: 
 ~ 25 ps (240V) 
• Time resolution of average of 3 UFSD: 
 20 ps (200V) & 16 ps (240V) 
• Timing resolution agrees  
 with expectation σ(N) = σ(1)/N0.5 
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240V 

3 identical 45 μm thick 1.3x1.3 mm2 LGAD 
produced by CNM 
 
To extract the time stamp of the LGAD employ 
constant-fraction discrimination (CFD) to correct 
for time walk (CFD ≈ 20%). 
 
Important: this can be reliably implemented in an 
ASIC. 

N. Cartiglia et al., “Beam test results of a 16 ps timing system based on ultra-fast silicon detectors”, NIM. A850, (2017), 83–88. 



LAPPDs -> MCP timing 
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• Each ‘pixel’ is 20” 
• Fragile, expensive 
• Few ns timing 
• Neutrino cross-section 

can’t be fooled 
• 40% photocathode 

coverage 
 < 100ps timing 
 < cm pos. resolution 
 Significantly larger 

number of voxels 
 Larger fiducial volume 



Production single photon testing 

Use SSTin period 
constraint to calibrate 
absolute timebase 

~31ps TDC+phase 
 
SL-10 TTS ~35ps 
 
IRSX electronics: 

~33ps 
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10ps Timing (really, folks) 
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10ps Timing (really, folks) 
• Electronics for Physicists 

– Switches, comparators 

– Current Sources 
– References and temp compensation 

• Measure speed of light with a stopwatch? 
– Time-Time converter (“time stretcher”) 
– Time-Amplitude Conversion (+ADC) 
– TAC + TDC (simple counter) 

• Student projects 
1. Actually build test circuits 
2. High quality analog difficult 
3. Sub-10ps not so difficult 
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So What is the Disconnect? 
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L. Ruckman, G. Varner, NIM A602 (2009) 438-445 
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Fast, Focusing-DIRC Experience 

Beamline  

CR Test 

“25ps CFD in lab” 
 -End Station A environment 



Picosecond needs 
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arXiv:1708:01798 (5-AUG-2017) 
2.3ps intrinsic timing resolution 

(SLAC ESTB measurement) 

Askaryan Calorimeter Exp (ACE) Radio (mm wave) 
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Predictions from the last decade … 

J-F Genat, G. Varner, F. Tang, H. Frisch 
NIM A607 (2009) 387-393.  

G. Varner and L. Ruckman 
NIM A602 (2009) 438-445.  

1GHz analog bandwidth, 5GSa/s Simulation includes detector response 



Interest in exquisite space-time Resolution 
In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.)   
a growing interest in detectors capable of operating at the pico-second resolution and µm spatial 
resolution limit (for light 1 ps = 300 µm) 

Extending to 1ps and lower, with 
advanced calibration techniques 

Signal-to-Noise Ratio 

Prediction:       
circa 2009 

Measurement: 
circa 2014 

Front-End Electronics Fast signal collection x-ray detectors 

beam in 

200 – 300 
µm 

active 
edges 

signal electrodes 
with contact pads to 

readout 
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ASIC 
 

# chan 
 

Depth/chan 
 

Time Resolution [ps] 
 

Vendor 
 

Size [nm] 
 

Year 

LABRADOR 3 
 

8 
 

260 16 TSMC 250 2005 

BLAB 
 

1 
 

65536 1-4 TSMC 250 2009 

STURM2 
 

8 
 

4x8 <10 (3GHz ABW) TSMC 250 2010 

DRS4 
 

8 
 

1024 
 

~1 (short baseline) 
 

IBM 250 
 

2014 
 

PSEC4 
 

6 
 

256 
 

~1 (short baseline) 
 

IBM 130 2014 

RITC3 
 

3 
 

Continuous 
 

TBD  
 

IBM 
 

130 ? 
 

--- 
 

PSEC5 
 

4 
 

32768 
 

TBD  
 

TSMC 
 

130 
 

--- 
 

DRS5 
 

8/16? 
 

128x32 
 

TBD 
 

UMC 110 --- 

SamPic 16 64 ~few [pic 0] AMS 180 [2014] 

RFpix 128? TBD <= 100fs (target) TSMC 
 

130 ? 
 

--- 

Toward increased timing precision 
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Very incomplete:  missing S. Kleinfelder ASIC from yesterday  
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Constraint 1:  Analog Bandwidth 
Difficult to couple in Large BW (C is deadly) 

f3dB = 1/2πZC  
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Constraint 2:  kTC Noise 
Want small storage C, but… 

1mV on 16fF is only 
100e- ! 
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Constraint 3:  Leakage Current 
Increase C or reduce conversion time << 1mV  

Sample channel-channel variation         
~ fA  nA leakage (250nm  130nm) 



The ultimate Space-Time Limit 

• How to measure something extremely 
precisely in HEP? 
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Cancel systematic errors in ratio 



What would it take? 
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• Micron spatial pixel resolution (using timing) 
 Fast timing brings many benefits: 
 Minimal pile-up (fast clearing) 
 Improved event timing (direct T0 for TOF/TOP 

measurements) 
 Belle II data archiving!   



Exploration of the space-time limit 

             Pixel detector (PDX) at SuperKEKB 

-Sampling at high sampling rate and high bandwidth 
-Resolve small distances 
Current Goals:  Spatial resolution of 10μm in z and 20μm in rφ 
In Silicon 10μm in z corresponds to timing resolution of about 100fs 
   20μm in rφ will depend on the SNR 
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Signal Propagation 
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Spatial resolution correlation 
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Performance Parameter Space  
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Overall optimization/interplay 
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Target Specifications  
 

Parameter Minimum desired value 

Sampling frequency (ASIC)       20 GHz 

Bandwidth (Detector and ASIC) 3 GHz 

Signal to Noise Ratio (Detector and ASIC) 58dB (Vsignal=1 Volt) 

Velocity of Propagation (Transmission 
Line/ strip line) 

 0.35c 

Number of Bits of Resolution  9.4 bit 
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This is an ongoing study – snapshot 
PhD student needs to finish  focus on ASIC 

A device with <=1ps (independent of aperture) interesting 
 

PSEC4 design as a reference  PSEC5 design 
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~1.6 GHz 

40 

PSEC4 

PSEC5  us 
sampling latency 



PSEC4: Sampling Analysis 

x256 

Utilizing PSEC4’s SCA as starting place 
-Adjustable Sampling rate between 4-15 GSPS 
-1.6 GHz bandwidth 
 
 
 
 
 
 
 
 
 
 
 
 
 
also 
-0.13μm CMOS (IBM-8RF) 
-10.5 bit  DC dynamics  
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Equivalent Circuit 
Multichannel 
 sampling array  

42 
42 



Simulation Results: Bandwidth for 
worst case operating bias point 
Whether the 1st switch is on or the last, Gain is the 

same 

f3dB 
w/ Par w/ 50 Ω 1.0 GHz 

w/o Par w/ 50 Ω 1.4 GHz 

w/ Par w/o 50 Ω 1.9 GHz 

w/o Par w/o 50 Ω 2.2 GHz 
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Pass Transistor (Switch) Resistance 

Voltage [V]
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• Ron=2.4k @665mVdc 
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• Roff is in GΩ 

• The PFET and NFET are not matched and 
Ron varies considerably 

TRACK state HOLD state 

NFE
T 

PFE
T 
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Small signal frequency response 

Vdc [V]
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Bandwidth 

• Isolation is over 60dB over 
all parameter space 
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Isolation 

• BWworst≈1.7GHz @665mVdc 
@50Ω drive 

• BWworst≈2.3GHz @665mVdc 
@LowZ drive 
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Summary 

• 10’s of picoseconds: 
 HL-LHC, MCP-PMTs, TOF-PET 
 Many WFS, TDC options:  amplifier challenge 
 System engineering  

 

• ~1ps: 
 Space-time Detector determined 
 Direct conversion techniques  

 

• Femtosecond: 
 Differential techniques 
 Pushing the equivalent space-time limit 

‘Precision Timing’ has different meanings 
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Back-up slides 



PSEC4 Analysis: Single Sampling Cell 
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PSEC4 Analysis: Single Sampling Cell 
Structure & Layout 

Top view Side view 
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Simplified Schematic • Driver circuit 
• Switch with n-p FET pair 
• Sampling capacitor 
• Comparator as load 

Switch & Sampling Capacitor 
Equivalent Circuit 

• Check Csampling 
capacitance 

• Identify Ron and Roff 
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Single Sampling Cell Coupling 



Simulation Results: Group Delay 
  Group Delay does vary depending which switch is on by ~25ps 

which puts a constraint on sampling time window 
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Simulation Results: Phase 
• At higher frequencies Phase vs freq behavior is also different 

and depends on which switch is on 

52 
Frequency (Hz) 



Simulation Results: Capacitance 

Capacitance is 2.2 pF and does not dependent on 
which switch is on  
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Sampling Capacitor Spread 

Capacitance [fF]

14 16 18 20 22 24 26 28

N
u

m
 o

f 
S

a
m

p
le

s

0

50

100

150

200

250

Monte Carlo with process variation 
and mismatches shows a 
discrepancy between Csampling 
Schematic (13.5 fF) and Measured 
mean (20.27 fF).  
 
The Spread is about 1.9fF which 
makes the Capacitor tolerance at 
about 9.3%  

Num. of 
Samp. 

MEAN STD MIN MAX 

1000 20.27 fF 1.89 fF 14.86 fF 26.24 fF 
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Frequency Analysis 
Performance: S(Z)-parameter 

0.
2

0.
5

1.
0

2.
0

5.
0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0

Z11 TRACK 200mVdc

Z11 TRACK 600mVdc

Z11 TRACK 900mVdc

Z11 HOLD 200mVdc

Z11 HOLD 600mVdc

Z11 HOLD 900mVdc

The input impedance 
is high and it is 
capacitive. 
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Input coupling analysis 

𝒁𝒁𝟏𝟏𝟏𝟏 =
𝟏𝟏 + 𝒔𝒔𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶𝑹𝑹

𝒔𝒔𝟐𝟐𝑪𝑪𝑰𝑰𝑰𝑰𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶𝑹𝑹+ 𝒔𝒔 𝑪𝑪𝑰𝑰𝑰𝑰 + 𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶
 

The transfer function parts: 
• input parasitic capacitance of the transistor 

plus capacitance of the transmission line 
section. 

• Series resistance of the transistor channel 
(Rds) 

• Output capacitance which is formed of the 
parasitic capacitance of the transistor, 
sampling capacitor and load capacitance  
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Con-nopar

Con-par

Con-par&load

Coff

Capacitance Value [fF] 

Cin_open 8fF 

Csw_out 10fF 

Csamp 20.3fF 

Cload 13fF 

Capacitance values 

Cin + 
Cout 

Cin 
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Small signal frequency response 

Vdc [V]
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Isolation 

• BWworst≈1.7GHz @665mVdc 
@50Ω drive 

• BWworst≈2.3GHz @665mVdc 
@LowZ drive 
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Small signal phase analysis 
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Group Delay without the load 
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Group Delay with the load 

 Large group delay variation points to large distortion 
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Large signal response (I) 

Vp [V]
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Low frequency gain compression 

Vp [V]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
V

d
c 

[V
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 
 

 
 

High frequency gain compression 

• Full dynamic range at low 
frequency, compression 
appears when reaching the 
voltage threshold of the PN 
junctions at the 
drain/substrate barrier.  

• Gain compression at lower 
and higher amplitudes 
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Large signal analysis (II) 
High frequency gain compression & 
distortion 

Three region of operation: 
• Low distortion & High 

compression 
• Moderate distortion & Moderate 

compression 
• High distortion & High 

compression 
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Understanding signal response 

Low distortion & High compression 

Time [ns]

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
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]

0.64

0.642
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0.65
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0.658

0.66

IN

OUT

• Resistance of the channel does 
not vary much   -> Low distortion 

• At high resistance the bandwidth 
is limited          -> lowering of the 
gain (compression) 
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Understanding signal response 

Moderate distortion & Moderate 
compression 

• Resistance of the channel is varying                                       
-> The bandwidth at instantaneous values 
of the incident voltage waveform is 
different                                          

   -> In frequency domain this gives rise to 
higher harmonics, which interfere 
constructively hence  increasing the overall 
signal amplitude but also increases distortion 
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Harmonic decomposition 

Time [ns]
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Time domain decomposition Frequency domain decomposition 

• Constructive interference of odd 
harmonics and destructive 
interference of even harmonics at 
the peaks 

• Constructive interference of second 
and third harmonics at zero crossing  
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Noise and Distortion 

Vdc [V]
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Input referred noise 

• Noise dominated by the ON 
resistance of the channel 

Integrated referred noise 
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Noise, distortion and dynamic range 
Signal to Noise Ratio at full scale input (1Vin) 

Vdc [V]
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• SNR is around 61.7dB ± 0.3 dB 
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Distortion analysis 
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Distortion at fixed Vdc Distortion at fixed Frequency 

• Most of the distortion comes from the Ron variation over 
the input voltage range 
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Transient Response 
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HOLD 

HOLD 
TRACK 

Backlash 

Forward 
Transient 

Pedestal Error 

Acquisition time 
Settling time 

Input Vdc voltage Acquisition time Settling time 

300mV 0.14ns 0.11ns 
600mV 0.68ns 0.11ns 
900mV 0.52ns 0.11ns 

• 15% backlash at 30mV forward 
transient 

• Pedestal error due to charge 
injection and transistor 
mismatch dominate • Worst case window time is 0.8ns or 

1.25GHz -> due to low bandwidth 
• Best case is 0.25ns or 4GHz 
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Summary – Requirements comparison 
Parameter Measured (worst case) Requirement 

Bandwidth  1.7GHz @665Vdc @50Ω 3GHz 

SNR 61.7 dB 58dB 

ENOB 9.8 bits (small region) 9.4 bits 

Things to improve: 

• Reduce Ron variance over the dynamic range to reduce distortion and increase 
the ENOB 

• Timebase generator stability 
• Bandwidth improvement: 

• Reduce Cin or reshape the channel to increase the bandwidth (first pole) 
• Reduce Ron overall value to increase the bandwidth (second pole) 

• In summary: 
• Increase bandwidth 
• Need fast detector 

• Use differential configuration to reduce pedestal error and increase noise 
coupling and crosstalk immunity  
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Ongoing Plans 
• “Pixel” vertex detector using precision timing? 
• PSEC5 ASIC 

– 256  32k sample storage 
– Work to optimize bandwidth, ENOB 
– Persistence effects 

• RFpix ASIC 
– Push limits of ABW, timing 
– Below 100-200fs, direct spatial measurement becomes 

interesting 
– Many practical issues, but none fundamental (CF 1ps) 

• DRS5, SAMPIC ASICs 
– Will be interesting to see how well can perform 
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Visualizing parameters for time resolution in z 

 

∆t =
∆U
U

1
0.34 ∗ BW ∗ f s

^ Need to hold sampling frequency 
to least at 20 GHz to  
have timing resolution in 
100fs range  

< For the above sampling freq and 
BW integrated noise amplitude  
has to be in the range or less than 
0.5mV to 0.6mV corresponding  
to SNR~58dB (Vpp=1volts) 
 
     SNR~58dB corresponds to 9.4 
             bits for 20μm resolution 
  in rφ  (Ideal ADC)   
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Design Choices 
• Input coupling 

– Differential versus single-ended input 

– Needed analog bandwidth 
– Gain needed? 

• Sampling Options 
– On-chip PLL/DLL 
– External DLL 
– Analog transfer vs. interrogate in situ 

• ADC and readout options 
– Sequential output select vs. random access 
– On-chip vs. off-chip ADC 
– Serial, parallel, massively parallel 

 
Many variants have been explored… 
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SINAD & ENOB assessment 

ENOB at low frequency 

𝑺𝑺𝑰𝑰𝑰𝑰𝑺𝑺𝑺𝑺 = −𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏
−𝑺𝑺𝑰𝑰𝑹𝑹𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏−

𝑶𝑶𝑻𝑻𝑺𝑺
𝟏𝟏𝟏𝟏  

𝑬𝑬𝑰𝑰𝑶𝑶𝑬𝑬 =
𝑺𝑺𝑰𝑰𝑰𝑰𝑺𝑺𝑺𝑺 − 𝟏𝟏.𝟕𝟕𝟕𝟕 + 𝟐𝟐𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒔𝒔𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭
𝑰𝑰𝑰𝑰𝑰𝑰𝑭𝑭𝑰𝑰

𝟕𝟕.𝟏𝟏𝟐𝟐  
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ENOB versus frequency 

• ENOB DOMINATED BY 
DISTORTION 
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Now pushing to the femtosecond regime 

And pushing the space-time limit                
(new type of PID  or DIRC  devices?) 

P. Orel and  G. Varner 
IEEE Trans. Nucl. Sci. 64 (2017) 1950-1962.  

P. Orel, G. Varner                  
and P. Niknejadi 

NIM A857 (2017) 31-41.  

Pushing sampling speed and analog bandwidth 
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