Precision Timing in HEP Experiments

An 8－fold way．．．

黄色い！

Orange
Grün！

Gary S．Varner

($x, y, z ; t$) - As a neverending student
($x, y, z ; t$) - As a neverending student

- Learn 'Time’ is a fiction
($x, y, z ; t$) - As a neverending student
- Learn 'Time’ is a fiction
- Heisenberg Uncertainty
($x, y, z ; t$) - As a neverending student
- Learn 'Time’ is a fiction
- Heisenberg Uncertainty

$$
\Delta E \Delta t \geq \npreceq / 2
$$

（ $x, y, z ; t$ ）－As a neverending student
－Learn＇Time＇is a fiction
－Heisenberg Uncertainty

$$
\begin{array}{r}
\Delta E \Delta t \geq K / 2 \\
\text { 小林 益川 }
\end{array}
$$

$$
V_{\mathrm{CKM}} \equiv V_{L}^{u} V_{L}^{d \dagger}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Measurement of $\sin \left(2 \varphi_{1}\right) / \sin (2 \beta)$ in $\mathrm{B} \rightarrow$ Charmonium K^{0} modes

Overpowering evidence for CP violation (matter-antimatter asymmetries). >>>> The phase of $\mathrm{V}_{\text {td }}$ is in good agreement with Standard Model expectations. This is the phase of B_{d} mixing.

'Precision Timing' - 3 realms

- 10 's of ps
- ~1ps
- Sub-ps (femtosecond)

‘Precision Timing’ - 3 realms

- 10 's of ps
- ~1ps
- Sub-ps (femtosecond)

Trailokya (Sanskrit: त्रैलोक्य; Pali: tiloka, Wylie: khams gsum) has been translated as "three worlds,"[1][2][3][4][5] "three spheres,"[3] "three planes of existence,"[6] "three realms"[6] and "three regions."[4] These three worlds are identified in Hinduism and appear in early Buddhist texts.

'Precision Timing' - 3 realms

- 10's of ps
- ~1ps
- Sub-ps (femtosecond)

3 options: 2^3 Combinations (8)

'Precision Timing' - 3 realms

- 10's of ps
- ~1ps
- Sub-ps (femtosecond)

3 options: 2^3 Combinations (8)

> My difficulty
> (1) Null set (3) Focus
> (3) Mix of 2
> (1) Overview of each

The canonical example: HL-LHC

- Luminosity of $5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ corresponds to an *average* pileup of 140 events
- Upper estimate of average number of pileup events for this lumi partly accounts for bunch-to-bunch variation
- Average of a Poisson distribution with a sigma of about 12 events
- Key questions:
- Can the detectors work with even higher (average) pileup to allow 3000 /fb to be delivered more quickly?
- Can a longer beam spot help pileup mitigation?
- Need to take into account in-time pileup (same bunch crossing) and out-of-time pileup (previous crossings) - particularly for ATLAS colorimeter and for muon spectrometers

Low-Gain Avalanche Detectors (LGAD)

Principle:
Add to n-on-p Silicon sensor an extra thin p-layer below th junction which increases the E-field so that charge multiplication with moderate gain of 1050 occurs without breakdown.

High Doping Concentration: High Field

Manufacturers of LGAD ($30 \mu \mathrm{~m}-300 \mu \mathrm{~m}$): CNM Barcelona (RD50, ATLAS-HGTD) HPK Hamamatsu FBK Trento (INFN)
very similar behavior with exception of breakdown voltage and special design features.

Figure 1 Screenshot of one event, showing the signals of 3 LGAD biased at 200 V and the SiPM at 28 V . Each horizontal division corresponds to 2 ns , while each

3 identical $45 \mu \mathrm{~m}$ thick $1.3 \times 1.3 \mathrm{~mm}^{2}$ LGAD produced by CNM

To extract the time stamp of the LGAD employ constant-fraction discrimination (CFD) to correct for time walk (CFD $\approx 20 \%$).

Important: this can be reliably implemented in an ASIC.

Timing resolution vs. \# of UFSD averaged

- Good matching of three LGAD
- Time resolution of single UFSD:
~ 25 ps (240V)
- Time resolution of average of 3 UFSD: 20 ps (200V) \& 16 ps (240V)
- Timing resolution agrees with expectation $\sigma(N)=\sigma(1) / N^{0.5}$

LAPPDs -> MCP timing

- Each 'pixel' is 20 "
- Fragile, expensive
- Few ns timing
- Neutrino cross-section can't be fooled
- 40% photocathode coverage
$><100$ ps timing
$><\mathrm{cm}$ pos. resolution
$>$ Significantly larger number of voxels
$>$ Larger fiducial volume

Production single photon testing

Laser timing: laser_pixel3_0_gain4_HV3201_18may2015

10ps Timing (really, folks)

10ps Timing (really, folks)

- Electronics for Physicists
- Switches, comparators
- Current Sources
- References and temp compensation

10ps Timing (really, folks)

- Electronics for Physicists
- Switches, comparators
- Current Sources
- References and temp compensation
- Measure speed of light with a stopwatch?

10ps Timing (really, folks)

- Electronics for Physicists
- Switches, comparators
- Current Sources
- References and temp compensation
- Measure speed of light with a stopwatch?
- Time-Time converter ("time stretcher")
- Time-Amplitude Conversion (+ADC)
- TAC + TDC (simple counter)

10ps Timing (really, folks)

- Electronics for Physicists
- Switches, comparators
- Current Sources
- References and temp compensation
- Measure speed of light with a stopwatch?
- Time-Time converter ("time stretcher")
- Time-Amplitude Conversion (+ADC)
- TAC + TDC (simple counter)
- Student projects

1. Actually build test circuits
2. High quality analog difficult
3. Sub-10ps not so difficult

So What is the Disconnect?

Summary of TOF System Timing Resolution

L. Ruckman, G. Varner, NIM A602 (2009) 438-445

Fast, Focusing-DIRC Experience

"25ps CFD in lab"

-End Station A environment

Picosecond needs

Askaryan Calorimeter Exp (ACE)

Radio (mm wave)

arXiv:1708:01798 (5-AUG-2017) 2.3ps intrinsic timing resolution (SLAC ESTB measurement)

ACE channel-to-channel cross-correlation relative timing delays

Predictions from the last decade

1 GHz analog bandwidth, 5GSa/s

Time Difference Dependence on Signal-Noise Ratio (SNR)

G. Varner and L. Ruckman NIM A602 (2009) 438-445.

Simulation includes detector response

J-F Genat, G. Varner, F. Tang, H. Frisch NIM A607 (2009) 387-393.

Interest in exquisite space-time Resolution

In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.) a growing interest in detectors capable of operating at the pico-second resolution and $\mu \mathrm{m}$ spatial resolution limit (for light 1 ps $=300 \mu \mathrm{~m}$)

Front-End Electronics

Fast signal collection x-ray detectors

Toward increased timing precision

ASIC	\# chan	Depth/chan	Time Resolution [ps]	Vendor	Size [nm]	Year
LABRADOR 3	8	260	16	TSMC	250	2005
BLAB	1	65536	1-4	TSMC	250	2009
STURM2	8	4x8	<10 (3GHz ABW)	TSMC	250	2010
DRS4	8	1024	~1 (short baseline)	IBM	250	2014
PSEC4	6	256	~1 (short baseline)	IBM	130	2014
RITC3	3	Continuous	TBD	IBM	130 ?	---
PSEC5	4	32768	TBD	TSMC	130	---
DRS5	8/16?	128×32	TBD	UMC	110	---
SamPic	16	64	\sim few [pic 0]	AMS	180	[2014]
RFpix	128?	TBD	<= 100fs (target)	TSMC	130 ?	---

Very incomplete: missing S. Kleinfelder ASIC from yesterday

Constraint 1: Analog Bandwidth

Difficult to couple in Large BW (C is deadly)

Constraint 2: kTC Noise

Want small storage C, but...

Constraint 3: Leakage Current

Increase C or reduce conversion time $\ll 1 \mathrm{mV}$

Sample channel-channel variation

\sim fA \rightarrow nA leakage ($250 \mathrm{~nm} \rightarrow$ 130nm)

The ultimate Space-Time Limit

- How to measure something extremely precisely in HEP?

The ultimate Space-Time Limit

- How to measure something extremely precisely in HEP?

Cancel systematic errors in ratio

What would it take?

- Micron spatial pixel resolution (using timing)
\rightarrow Fast timing brings many benefits:
> Minimal pile-up (fast clearing)
$>$ Improved event timing (direct TO for TOF/TOP measurements)
> Belle II data archiving!

Exploration of the space-time limit

-Sampling at high sampling rate and high bandwidth
-Resolve small distances
Current Goals: Spatial resolution of $10 \mu \mathrm{~m}$ in z and $20 \mu \mathrm{~m}$ in $\mathrm{r} \varphi$
In Silicon $10 \mu \mathrm{~m}$ in z corresponds to timing resolution of about 100fs $20 \mu \mathrm{~m}$ in $\mathrm{r} \varphi$ will depend on the SNR

Pixel detector (PDX) at SuperKEKB

Signal Propagation

Spatial resolution correlation

Performance Parameter Space

Overall optimization/interplay

Target Specifications

Parameter	Minimum desired value
Sampling frequency (ASIC)	20 GHz
Bandwidth (Detector and ASIC)	3 GHz
Signal to Noise Ratio (Detector and ASIC)	$58 \mathrm{~dB}\left(\mathrm{~V}_{\text {signal }}=1\right.$ Volt)
Velocity of Propagation (Transmission Line/ strip line)	0.35 c
Number of Bits of Resolution	9.4 bit

This is an ongoing study - snapshot PhD student needs to finish \rightarrow focus on ASIC A device with <=1ps (independent of aperture) interesting PSEC4 design as a reference \rightarrow PSEC5 design

PSEC4

PSEC5 \rightarrow us

 sampling latency

PSEC4: Sampling Analysis

Utilizing PSEC4's SCA as starting place
-Adjustable Sampling rate between 4-15 GSPS
-1.6 GHz bandwidth

Equivalent Circuit

Multichannel
sampling array

Gain vs Frequency

- First Call ON wo Par
- First Cell ON w' Par
----- First 2 Cells ON w/Par
......... First 3 Cells ON w/ Par

Simulation Results: Bandwidth for worst case operating bias point

Whether the $1^{\text {st }}$ switch is on or the last, Gain is the same

Pass Transistor (Switch) Resistance

TRACK state

- Ron=2.4k @665mVdc

HOLD state

- Roff is in $\mathbf{G} \Omega$
- The PFET and NFET are not matched and Ron varies considerably

Small signal frequency response

- BWworst 2.3 GHz @665mVdc @LowZ drive
- BWworst $\approx 1.7 \mathrm{GHz}$ @665mVdc @ 50Ω drive

- Isolation is over 60 dB over all parameter space

Summary

'Precision Timing' has different meanings

- 10's of picoseconds:
> HL-LHC, MCP-PMTs, TOF-PET
> Many WFS, TDC options: amplifier challenge
> System engineering
- ~1ps:
> Space-time Detector determined
> Direct conversion techniques
- Femtosecond:
$>$ Differential techniques
> Pushing the equivalent space-time limit

Back-up slides

PSEC4 Analysis: Single Sampling Cell

Input pad

Transmission line

> Sampling cell (1 unit)

PSEC4 Analysis: Single Sampling Cell

Structure \& Layout

Side view
Transmission line

Thick Metal

Single Sampling Cell Coupling

Simplified Schematic

- Driver circuit
- Switch with n-p FET pair
- Sampling capacitor
- Comparator as load

Switch \& Sampling Capacitor Equivalent Circuit

- Check Csampling capacitance
- Identify Ron and Roff

Simulation Results: Group Delay

Group Delay does vary depending which switch is on by ~ 25 ps which puts a constraint on sampling time window

........ last Cell ON w Parasitic C

- 1st Cell On wo Parasitic C
- 1st Call ON w/Parasitic C

Simulation Results: Phase

- At higher frequencies Phase vs freq behavior is also different and depends on which switch is on

Simulation Results: Capacitance

Capacitance is 2.2 pF and does not dependent on which switch is on

Capacitance vs Frequency

- 1st Cell ON w/Parasitic C
- 1st Cell On wo Parasitic C
\ldots....... last Call ON W/Parasitic C

Sampling Capacitor Spread

Monte Carlo with process variation and mismatches shows a discrepancy between Csampling Schematic (13.5 fF) and Measured mean (20.27 fF).

The Spread is about 1.9 fF which makes the Capacitor tolerance at about 9.3\%

Num. of Samp.	MEAN	STD	MIN	MAX
1000	20.27 fF	1.89 fF	14.86 fF	26.24 fF

Frequency Analysis

Performance: S(Z)-parameter

The input impedance is high and it is capacitive.

Input coupling analysis

$$
Z_{11}=\frac{1+s C_{\text {OUT }} R}{s^{2} C_{I N} C_{\text {OUT }} R+s\left(C_{I N}+C_{\text {OUT }}\right)}
$$

The transfer function parts:

- input parasitic capacitance of the transistor plus capacitance of the transmission line section.
- Series resistance of the transistor channel (Rds)
- Output capacitance which is formed of the parasitic capacitance of the transistor, sampling capacitor and load capacitance

Capacitance values

Small signal frequency response

- BWworst 2.3 GHz @665mVdc @LowZ drive
- BWworst $\approx 1.7 \mathrm{GHz}$ @665mVdc @ 50Ω drive

- Isolation is over 60 dB over all parameter space

Small signal phase analysis

Group Delay without the load

Group Delay with the load

\rightarrow Large group delay variation points to large distortion

Large signal response (I)

- Full dynamic range at low frequency, compression appears when reaching the voltage threshold of the PN junctions at the drain/substrate barrier.

- Gain compression at lower and higher amplitudes

Large signal analysis (II)

High frequency gain compression \& distortion

Three region of operation:

- Low distortion \& High compression
- Moderate distortion \& Moderate compression
- High distortion \& High compression

Understanding signal response

Low distortion \& High compression

- Resistance of the channel does not vary much -> Low distortion
- At high resistance the bandwidth is limited -> lowering of the gain (compression)

TRACK state

Understanding signal response

- Resistance of the channel is varying

Moderate distortion \& Moderate compression

-> The bandwidth at instantaneous values of the incident voltage waveform is different
$\uparrow \quad->$ In frequency domain this gives rise to higher harmonics, which interfere constructively hence increasing the overall signal amplitude but also increases distortion

TRACK state

Harmonic decomposition

- Constructive interference of odd harmonics and destructive interference of even harmonics at the peaks
- Constructive interference of second and third harmonics at zero crossing

Frequency domain decomposition

Noise and Distortion

Input referred noise

- Noise dominated by the ON resistance of the channel

Integrated referred noise

- Total noise is around $0.29 \mathrm{mV} \pm 0.01$ mV

Noise, distortion and dynamic range

Signal to Noise Ratio at full scale input (1Vin)

- \quad SNR is around $61.7 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$

Distortion analysis

- Most of the distortion comes from the Ron variation over the input voltage range

Transient Response

Input Vdc voltage

600 mV 900 mV

- Worst case window time is 0.8 ns or 1.25 GHz -> due to low bandwidth
- Best case is 0.25 ns or 4 GHz

Transient response at $\mathbf{3 0 0} \mathbf{~ m V d c}$

- 15% backlash at 30 mV forward transient
- Pedestal error due to charge injection and transistor mismatch dominate

Summary - Requirements comparison

Parameter	Measured (worst case)	Requirement
Bandwidth	$1.7 \mathrm{GHz} @ 665 \mathrm{Vdc} @ 50 \Omega$	3 GHz
SNR	61.7 dB	58 dB
ENOB	9.8 bits (small region)	9.4 bits

Things to improve:

- Reduce Ron variance over the dynamic range to reduce distortion and increase the ENOB
- Timebase generator stability
- Bandwidth improvement:
- Reduce Cin or reshape the channel to increase the bandwidth (first pole)
- Reduce Ron overall value to increase the bandwidth (second pole)
- In summary:
- Increase bandwidth
- Need fast detector
- Use differential configuration to reduce pedestal error and increase noise coupling and crosstalk immunity

Ongoing Plans

- "Pixel" vertex detector using precision timing?
- PSEC5 ASIC
- $256 \rightarrow$ 32k sample storage
- Work to optimize bandwidth, ENOB
- Persistence effects
- RFpix ASIC
- Push limits of ABW, timing
- Below 100-200fs, direct spatial measurement becomes interesting
- Many practical issues, but none fundamental (CF 1ps)
- DRS5, SAMPIC ASICs
- Will be interesting to see how well can perform

Visualizing parameters for time resolution in z

Design Choices

- Input coupling
- Differential versus single-ended input
- Needed analog bandwidth
- Gain needed?
- Sampling Options
- On-chip PLL/DLL
- External DLL
- Analog transfer vs. interrogate in situ
- ADC and readout options
- Sequential output select vs. random access
- On-chip vs. off-chip ADC
- Serial, parallel, massively parallel

Many variants have been explored...

SINAD \& ENOB assessment

SINAD $=-10 \log _{10}\left[10^{-\frac{S N R}{10}}+10^{\left.-\frac{T H D}{10}\right]}\right.$
ENOB versus frequency

- ENOB DOMINATED BY DISTORTION

Now pushing to the femtosecond regime

Pushing sampling speed and analog bandwidth

And pushing the space-time limit (new type of PID or DIRC devices?)
P. Orel and G. Varner

IEEE Trans. Nucl. Sci. 64 (2017) 1950-1962.

