

HEPIC2017

ASIC Design & Development Activities at Argonne National Laboratory

Gary Drake Argonne National Laboratory

> SLAC October 4, 2017

About Argonne National Laboratory

Argonne is a Multi-Disciplinary Laboratory

- 14 Science Divisions
- 22 Divisions/Sections/Facilities total
- The HEP Division
 - Medium-sized division at ANL ~130 people
 - But arguably is the most aggressive in using leading-edge technologies, particularly high-level integration of FEE and detectors...
 - ⇒ We have a need for ASICs in our research & collaborative work
 - ⇒ We have elected to not host an in-house ASIC design group
 - ⇒ Instead, we have formed a strategic partnership with FNAL...

The Advanced Photon Source

- Has recently taken advantage of ANL/FNAL collaboration in ASIC design

Fiscal Year 2016 Budget: \$770 million Procurement: \$300 million

Workforce

- 3,206 total employees (FTEs)
- 268 postdoctoral scholars
- 582 graduate and undergrad students
- · 256 Joint faculty
- 7,422 facility users
- 1,005 visiting scientists

Research

- 14 research divisions
- 5 national scientific user facilities
- Many centers, joint institutes, program offices
- Hundreds of research partners

USER FACILITIES

- Advanced Photon Source
- Argonne Leadership Computing
 Facility
- Argonne Tandem Linear Accelerator System
- Center for Nanoscale Materials
- Transportation Research and Analysis Computing Center

A Few Examples of ASIC Development Work...

QIE readout for the ATLAS Tile Calorimeter at the LHC

- Current Electronics for ATLAS TileCal
 - Uses pulse-shaping
 - Uses Hi Gain / Lo Gain 10-bit digitization
 - Triggered readout
- For Phase 2 Upgrade
 - New electronics required
 - End of life of current electronics
 - Need higher radiation tolerance
 - DAQ system architecture changes (no HDW trigger)
 - 3 FE options considered

\Rightarrow QIE proposed by ANL \rightarrow QIE12

- "Enhanced" version of CMS QIE (QIE8/QIE10/QIE11)
- 1.55 fC least count sensitivity
- 17 bits of dynamic range
- 1 nS TDC in each crossing
- Current integrator (uses programmable shunt from the QIE)

⇒ Proposed work complementary with FNAL work on CMS

QIE12 Screen Shot from Tom Zimmerman

Block Diagram of the QIE12 ASIC

QIE Readout for the ATLAS Tile Calorimeter at the LHC

Block diagram of readout system

Block diagram of front-end board

Design Process of the QIE Front End

ANL ASIC Developments – G. Drake – HEPIC2017 – October 4, 2017

7

QIE12 Specifications:

- Begun ~2012 with specification for QIE10, Collaboration between ANL & FNAL
- QIE12 realized ~2013-2014 by Tom Zimmerman, 2 versions
- Bench Tests at ANL (2 versions, ~2013-2015)
 - Characterize performance; Feedback on improvements
- FE Design at ANL (~2014-2016, 2 versions)
 - Design FE & readout system based upon **QIE & DAQ interfaces**
- Prototype Design & Construction (~2015)
 - Build 1 board \rightarrow 12 boards for "Mini Drawer"
- Small System Construction (~2016)
 - Procured ~60 chips
 - Built 2 Mini Drawers, 24 channels
- Test Beam Operation & Data (~2016)
 - Successfully operated system in 2016 CERN test beam
 - Built 2 Mini Drawers, 24 channels
- ⇒ Nice Progression from Conception to Data Excellent Collaboration between ANL/FNAL ⇒ Highly successful, but ANL has left TileCal...

Chips

FF

Boards

Mini

DCAL Readout for the Tile Calorimeter at the ILC (CALICE)

Detector R&D Project using Particle Flow Algorithms

- Resistive Plate Chambers, 1 cm2 pads
- Highly-integrated readout \rightarrow DCAL ASIC

ASIC Requirements

- Capability for Self & ExternalTriggering
- 20-stage pipeline 2 mSec latency @ 100 nSec
- Capability of FE to source prompt Trigger Bit
- Capability to store up to 7 triggers in ASIC output buffer (FIFO)
- Design for 100 Hz (Ext. Trig) nominal rate
- Deadtimeless Readout
- Zero-suppression implemented in front-end
- On-board charge injection with programmable DAC
- Design for 10% occupancy
- Concatenate data in front-ends
- Use serial communication protocols
- Slow controls separate from data output stream
- Compatibility with CALICE DAQ

Developed DCAL Chip with FNAL (Funded through ANL)

ANL ASIC Developments – G. Drake – HEPIC2017 – October 4, 2017

DCAL3 Layout

Design Process of the DCAL System Chips DCAL Chip Development: Begun ~2004 with specification for DCAL chip Collaboration between ANL & FNAL DCAL1 realized ~2006 by Jim Hoff DCAL2 realized ~2007 DCAL3 realized ~2008 Production ~2009 \rightarrow 10,000 chips FE Bench Tests at ANL (3 versions, ~2006-2008) **Boards** Characterize performance; Feedback on improvements FE Design at ANL (~2008-2009, 2 versions) Design FE & readout system based upon DAQ interfaces Prototype Design & Construction (~2010) Build 1 board \rightarrow 6 boards for "Plane" Plane "Small" System Construction (~2010) Procured 11 wafers, ~10,300 chips Built 240 boards, 40 planes, 400,000 channels! Test Beam Operation & Data (~2011-2012) Successfully operated system in FNAL & CERN test beams Full Prototype ⇒ Nice Progression from Conception to Data Detector Excellent Collaboration between ANL/FNAL ⇒ Highly successful, viable technolgy for the ILC... ANL ASIC Developments – G. Drake – HEPIC2017 – October 4, 2017

DCAL Chip Testing at Fermilab

VIPIC-L Camera for Photon Imaging at the APS Upgrade

VIPIC-L: Vertically-Integrated Photon Imaging Chip - Large

- Development of a photon imaging camera for use at the APS light source
- 1.3M-pixel, single module camera for X-ray Photon Correlation Spectroscopy, 8-12 keV Xrays,
- Funded by DOE Office of Science Office of Basic Energy Sciences
- Collaboration between FNAL, BNL, & ANL

Roles & Responsibilities

 FNAL: Chip design - 3D ASIC (2 tiers 1.25×1.25cm2) in GF CMOS 130nm, design masks for 3D-integration processing for 3 interfaces (Tezzaron/Novati specification): ASIC tier-to-tier, ASIC digital back to PCB, ASIC analog front to sensor

⇒ Part of 3D development program at FNAL ⇒ Multi-project submission

– BNL & ANL: Back end DAQ; testing at light sources

Graphic & Status Courtesy of G.Deptuch

VIPIC-L Camera for Photon Imaging at the APS (Cont.)

The VIPIC-L Chip

- 3D ASIC (2 tiers 1.25×1.25cm2) in GF CMOS 130nm
- ~120M transistor (largest ASIC built by any US National Laboratory) and 65 mm pixel pitch
- 1 Mpixel = 3 slabs of 2×6 VIPIC-L
 LTD-bonded directly to a Si sensor wafer
- Blind TSVs in both sides after thinning, wafer-to-wafer bonding of ASIC followed by die-to-wafer bonding of ASICs onto a Si sensor slabs
- DAQ: 1 FPGA per VIPIC-L (fitting in its footprint) for on the fly data processing (up to 0.72 Tbps of raw data produced)

X-ray back-side illumination

⇒ Chip design complete; Fabrication is in progress ⇒ See FNAL & BNL talks for more details...

FASPAX: Fermi-Argonne Silicon Pixel Array X-ray Detector For the APS Upgrade

- The APS Upgrade New Regime in Area Detectors
 - X-ray camera beyond the dynamic range of a CCD, with the sensitivity of a photon counting detector
 - Burst image rate (~13 MHz)
 - Large, fully active (seamless) area (15x15 cm2),
 - Small pixel size (100x100 mm2) for 2.2M pixels
 - Single frame 10⁵ photon per image capability in small pixel footprint
- Enabler of Science
 - Studies of irreversible processes, time-resolved or high flux applications and high speed imaging (DCS)
 - \rightarrow Pump probe experiments

• FASPAX - Versatile, Fast Integrating Area detector:

- MHz burst frame rates will record high-resolution movies of millisecond phenomena
- Flexible dynamic range: on per pixel basis, gain for integrated signal – from single photon to 10⁵ photon/pixel

 $http://unlcms.unl.edu/physics-astronomy/fuchs-group/pictures/pump_probe_setup.png$

⇒ Exceeds the capability of any existing X-ray detector

ANL ASIC Developments – G. Drake – HEPIC2017 – October 4, 2017

FASPAX Pixel Camera for the APS

Approach uses 3D integrated technology

- Provides seamless, wafer-scale detector
- Back-illuminated to detect X-rays
- Interposer adapts sensor pixel to ASIC pitch
- ASICs in SiGe process, bump-bonded to interposer
- 500 mm thick Si X-ray detector

Parameter	Value
Pixel size	100x100 μm²
Buffer depth	24 – 256
Range	$1 - 10^5 \gamma's$
Detector area	~15x15 cm ²
Frame Rate	13 MHz
Well depth	1fC – 100 pC
Si Thickness	500-700 μm

FASPAX Pixel Camera for the APS Upgrade

- FE Uses QIE-based Current Splitter on each Pixel:
 - NPN current split ratios are set with multiple instances of unit-size transistor Q.
 - Splitter base is driven by a feedback amplifier in order to provide low input impedance and maximum bandwidth.
 - Splitter outputs pass through current limiters on the lower ranges: with a large input signal (lower ranges will not be selected), most of the input current is shunted away ("dumped").
 - Cascode transistors isolate current splitter output capacitance from integrators
 - Use passive integrators: simple! No power required, the signal does all the work!

FASPAX Pixel Camera for the APS Upgrade

Readout Block Diagram

- Store (8*3)24 samples, then read
- 4 rows grouped together per analog output

⇒ Chip design complete; Working on commercialization...
 ⇒ See FNAL talks for more details...

Summary

- Argonne has been developing ASICS over last ~20 years, primarily through partnership and collaboration with Fermilab
 - Highly successful program
 - Has allowed us to develop sophisticated, leading-edge instrumentation systems contributing to the national HEP program
 - HEP has benefitted significantly; APS starting to benefit; PHY in the future (FRIB?...)
- Excellent example of complementary use of national laboratory resources
 - Leverages expertise from a large, highly-successful ASIC design group with wide breadth & depth of skills
 - Reduces licensing costs
 - Promotes collaborative atmosphere
- But we could be doing more...
 - There are still barriers in inter-laboratory relations
 - Overheads \rightarrow Work for Others contracts
 - MOU / SOW/ general red tape
 - European groups have figured out how to reduce these barriers

⇒ This conference has the potential to make this better!!!