

1a

- Which parts of the ASIC design should be left to trained experts and which are important for keeping an innovative edge in the readout?
 - What are "trained experts"?
 - Very good experience with EE PhD students
 - During R&D phase evaluate both innovative & conservative options
 - Very good/fast at layout
 - Pull in supervisor's expertise
 - Physicists (in many cases students and postdocs) make significant firmware contributions (especially in algorithmic parts)
 - Mixed experience
 - Not a big step to synthesizing this in a chip... but presumably only after have proven their skills
 - Experts become experts through training and experience...

1b

- How will we encourage collaborations to be formed between smaller institutions and national labs?
 - Phase-1 ATLAS upgrade ASICs:
 - LAr: ADC (Columbia), multiplexer-serializer (SMU)
 - Muon: VMM (BNL), TDS (Michigan)
 - No US national lab-university collaboration (some SBU EE students following GdG class contributed to VMM):
 - No shared blocks in VMM
 - But significant collaboration between university groups (Columbia-Michigan-SMU) and with CERN microelectronics group
 - » Value of having (national) labs build/coordinate common building blocks like I/O drivers, PLLs, serializers etc.
 - » Intrinsic benefit of centrally useful SoC like GBTx: many contributors coordinated by (national) lab
 - No outreach from national labs for DUNE ADC, even though significant university expertise

- USATLAS
 - ❖ How will we maintain the participation and meaningful review of the Experimental Physics community that drives the need for ASIC's?
 - ASICs where they have clear advantages
 - Functionality doesn't exist in COTS
 - Inhospitable environment precludes COTS (radiation, temperature, volume, power,...)
 - Cost (large number of channels)
 - Future similar application to which one of 3 above applies
 - Develop expertise
 - Don't do ASICs for the sake of doing ASICs
 - Bright future for FPGA-based systems in HEP (ATLAS upgrades have at least as many FPGA-based deliverables as ASIC-based)
 - More data to be processed off-detector fast (also true for DUNE, but not for ILC...)
 - FPGAs to dominate LHC improvements beyond 2024 (mainly trigger & DAQ)
 - Versatile designers: ASICs but also FPGA-based applications
 - Smaller groups have these, because they have to

- How will we invite and train new designers with a foot in both engineering and physics communities to become involved in future projects to renew our physics instrumentation ranks?
 - No home run solution
 - Build pipelines in groups strong in instrumentation
 - Hope some of the students passionate enough to stay
 - Can't compete with industry salary-wise
 - So compete by versatility of work (industry jobs have much narrower focus)
 - And our search for answers to big questions

- USATLAS
 - How should we document experience/lessons learned with new tools or PDK related DRC errors that require hours or even days to figure out to speed up design cycles and reduce labor costs.
 - Agree this is a BIG issue
 - If CERN can host a central page, that would be great
 - But:
 - "Easy" to say what didn't behave
 - Not always clear why
 - And therefore what else is at risk
 - Or if another issue has the same underlying cause