The Photon PDF

Aneesh Manohar

in collaboration with P. Nason, G. Salam and G. Zanderighi

8 Nov 2017 UCLA

Aneesh Manohar

08.11.2017 UCLA 1 / 53

Image: A matrix and a matrix

Outline

- Introduction and Motivation
- Results for Photon PDF and uncertainties
- Derivation of formula
- Additional Results

AM, Nason, Salam, Zanderighi: PRL 117 (2016) 242002, 1708.01256

A (1) > A (2) > A

The $\gamma\gamma$ Luminosity from NNPDF30 — *S*(750)

NNPDF30_nnlo_as_0118_qed

< A >

Drell-Yan: Photon Induced Contribution

E. Accomando et al. arXiv:1606.06646 Drell-Yan (DY) $q\overline{q} \rightarrow \ell^+ \ell^-$. Photon-induced Drell-Yan (PI)

Drell-Yan: Photon Induced Contribution

E. Accomando et al. arXiv:1606.06646

NNPD23QED.

The Photon PDF error is much larger than the statistical error.

Also needed for VBF and associated Higgs production, tops, di-bosons, di-photons, EW corrections.

A better photon PDF is needed.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Photon PDF

 $\textit{f}_{\gamma/p}(\textit{x},\mu)$

Probability to find a photon with momentum fraction x in a proton, in the $\overline{\text{MS}}$ scheme

L is a large log, $L \sim \log Q^2/m_p^2$. Expect

 $f_{\gamma/p} \sim \alpha L$

Scheme dependence changes the order α (non-log) piece.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Previous Results

- Equivalent Photon Approximation (Fermi-Weizsäcker-Williams): Used for elastic scattering calculation, and to model photon as radiated from quarks above some mass scale. [EPA gets the αL term but not the full α term]
- Fit to data (mostly Drell-Yan)
- u, d quarks known to few percent, s to about 10 percent. γ has large uncertainty.

Photon PDF from DIS

So the photon PDF should be given in terms of F_2 and F_L , up to kinematic factors.

Image: A matrix and a matrix

Then some algebra ...

$$x f_{\gamma/p}(x, \mu^2) = \frac{1}{2\pi \alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{\frac{x^2 m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha_{phys}^2(Q^2) \right\}$$
$$\left[\left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2\left(\frac{x}{z}, Q^2\right) - z^2 F_L\left(\frac{x}{z}, Q^2\right) \right]$$
$$\underbrace{-\alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z}, \mu^2\right)}_{\text{MS "conversion term"}} + \underbrace{\mathcal{O}(\alpha^2, \alpha \alpha_s)}_{\text{no } L},$$

$$zp_{\gamma q}(z) = 1 + (1-z)^2 = 2 - 2z + z^2$$

include all $\alpha L(\alpha_s L)^n$, $\alpha(\alpha_s L)^n$, $\alpha^2 L^2(\alpha_s L)^n$ terms

Aneesh Manohar

08.11.2017 UCLA 9 / 53

We have a formula for the photon PDF

i.e. an expression given by an $= \mbox{sign}$ with a controlled error of known parameteric form

To obtain the photon PDF, evaluate the integral using measured structure functions.

Overall α , so uncertainties get multiplied by α

x, Q^2 plane and experimental inputs

White region contributes at order α from states with invariant mass between $m_{\rm p}$ and $m_{\rm p} + m_{\pi}$.

Use fits to the data in the various regions.

x, Q^2 Integration Region for $\mu = 30$ GeV

08.11.2017 UCLA 12 / 53

< 6 b

x, Q^2 Integration Region for $\mu = 30 \text{ GeV}$

08.11.2017 UCLA 12 / 53

x, Q^2 Integration Region for $\mu = 30$ GeV

08.11.2017 UCLA 12 / 53

Elastic Form Factors: Dipole Form

$$egin{aligned} G_{ ext{dipole}}(Q^2) &= rac{G(0)}{\left(1+rac{Q^2}{M_{ ext{d}}^2}
ight)^2}\ M_{ ext{d}} &= 0.84\, ext{GeV} \end{aligned}$$

$$M_{
m d}
eq M_
ho = 0.77\,{
m GeV}$$

note this is not VMD

08.11.2017 UCLA 13 / 53

æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Elastic Form Factors

J. Bernauer et al. (A1 Collaboration) PRC 90 (2014) 015206

A b

Elastic Contribution to f_{γ}

 r_p , TPE e^- vs e^+

æ

イロト イヨト イヨト イヨト

Resonance Region

Christy and Bosted, PRC 81 (2010) 055213 M. Osipenko et al. (CLAS Collaboration), PRD 67 (2003) 092001

CLAS at $Q^2 = 0.775 \,\mathrm{GeV}^2$

S. Simula — CLAS fit code.

< 6 k

(4) (5) (4) (5)

Low Q^2 Continuum

HERMES GD11-P Fit

< 17 ▶

Aneesh Manohar

High Q² Continuum

Region where Q^2 dependence of $F_{2,L}(x, Q^2)$ is given by QCD perturbation theory. Can reliably use PDF fits to parton distributions and QCD coefficient functions. Automatically includes RGE constraints.

$$F_2(x, Q^2) = \sum_a C_{2,a}(Q^2/\mu^2, x) \otimes f_{a/p}(x, \mu^2)$$

Use the NNLO results for *C* and PDF4LHC_nnlo_100

Contributions to Photon PDF

Elastic $\mu_p^2 = 7.8$

LUXqed17_plus_PDF4LHC15_nnlo_100 on LHAPDF

< ロ > < 同 > < 回 > < 回 >

Errors from various sources, stacked vertically

Final error given by summing the pieces in quadrature. 1-2% over most of the *x* range.

Aneesh Manohar

08.11.2017	UCLA	20 / 53
------------	------	---------

EFIT: The uncertainty on the elastic contribution that comes from the uncertainty on the A1 world polarised form factor fits.

EUN: The uncertainty that comes from replacing the A1 world polarised fit (which includes a two-photon-exchange correction) with just the world unpolarised data (which does not).

RES: Difference between Christy-Bosted and CLAS fits

•			
Anooe	n N	lano	nar
Allees	11 10	iano	nai

R: \pm 50% uncertainty on $R = \sigma_L / \sigma_T$ in the low- Q^2 continuum and resonance regions.

HO: Neglected higher order terms, estimated by replacing $\mu^2/(1-z)$ by μ^2 in the upper limit of the integral, and making a compensating change in the $\overline{\text{MS}}$ conversion term.

< ロ > < 同 > < 回 > < 回 >

PDF: Standard PDF uncertainties

э

M: Changing the transition between CLAS/CB fits and HERMES from 9 to 5 GeV².

T: A potential twist-4 contribution to F_L given by multiplying F_L by $1 + 5.5 \text{GeV}^2/Q^2$ for $Q^2 > 9 \text{ GeV}^2$. Cooper-Sarkar et al. arXiv:1605.08577

Comparison with Previous Results

- Note vertical scale: this is ratio (not percentage)
- NNPDF30 extends NNPDF23 with $\alpha(\alpha_s L)^n$ in running.

3 × 4 3

$\gamma\gamma$ Luminosity

 $pp
ightarrow HW^+ (
ightarrow \ell^+
u) + X$ at $\sqrt{s} =$ 13 TeV: 91.2 \pm 1.8 fb non- γ using HAWK

 $5.5^{+4.3}_{-2.9}\,\text{fb}$ with <code>NNPDF30</code> $4.4\pm0.1\,\text{fb}$ with <code>LUXqed</code>

Error reduced by factor of ~ 40

Aneesh Manohar

08.11.2017 UCLA 23 / 53

γ Momentum Fraction

Aneesh Manohar

08.11.2017 UCLA 24 / 53

2

Deep Inelastic Scattering (DIS) Structure Functions

cross section given by hadronic tensor

$$W_{\mu
u}(oldsymbol{p},oldsymbol{q}) = rac{1}{4\pi}\int\mathrm{d}^4 z\;oldsymbol{e}^{ioldsymbol{q}\cdot z}\langleoldsymbol{p},oldsymbol{s}|\left[j_\mu(x),j_
u(0)
ight]|oldsymbol{p},oldsymbol{s}
angle \;.$$

Aneesh Manohar

Structure Functions

$$egin{aligned} \mathcal{W}_{\mu
u}(oldsymbol{p},oldsymbol{q}) &= \mathcal{F}_1\left(-g_{\mu
u}+rac{q_\mu q_
u}{q^2}
ight) \ &+ rac{\mathcal{F}_2}{oldsymbol{p}\cdotoldsymbol{q}}\left(oldsymbol{p}_\mu-rac{oldsymbol{p}\cdotoldsymbol{q}\,oldsymbol{q}_\mu}{q^2}
ight)\left(oldsymbol{p}_
u-rac{oldsymbol{p}\cdotoldsymbol{q}\,oldsymbol{q}_\mu}{q^2}
ight) \end{aligned}$$

and $F_{1,2}$ depend on

$$Q^2 = -q^2 \qquad \qquad x_{\rm bj} = \frac{Q^2}{2p \cdot q}$$

Bjorken scaling: $F_i(x_{bj}, Q^2)$ independent of Q^2 . QCD shows this is violated by $\ln Q^2$ terms due to calculable anomalous dimensions at large Q^2 .

Longitudinal structure function:

$$F_L(x_{
m bj},Q^2) = \left(1 + rac{4x_{
m bj}^2m_p^2}{Q^2}
ight)F_2(x_{
m bj},Q^2) - 2x_{
m bj}F_1(x_{
m bj},Q^2).$$

In QCD, at large Q^2 , F_L is $\mathcal{O}(\alpha_s)$.

Will use F_2 and F_L instead of F_2 and F_1 .

In the structure function \sum_X is everything, including X = p, the elastic part.

3

Derivation: BSM probe + Factorization

A massless neutral lepton *I* and a massive neutral lepton *L* with mass $M \gg m_{\rm p}$, with a transition magnetic moment interaction

$$\mathcal{L} = rac{m{e}}{\Lambda} \,\overline{L} \,\sigma^{\mu
u} m{F}_{\mu
u} m{I} + ext{h.c.} \,.$$

and work to lowest order in $1/\Lambda$.

$$\widehat{\sigma}(I + \gamma \rightarrow L + X) = \sigma_0 M^2 \delta(s - M^2)$$
 $\sigma_0 = \frac{4\pi e^2}{\Lambda^2}$

Include EM corrections: No photon couplings to the lepton line. The vacuum polarization bubbles give

$$\overline{lpha}^{-1}(M_Z) = 127.94$$
 $lpha_{
m ph}^{-1}(0) = 137.036$ ratio = 0.93

Renormalization of the the EM current: Collins, AM, Wise PRD73 (2006) 105019

	nohor
ALIEPSITIVIA	I I I I AI
,	

08.11.2017 UCLA 29 / 53

4 D K 4 B K 4 B K 4

Define

$$e_{\mathrm{ph}}(q^2) = rac{e^2(\mu)}{1-\Pi(q^2,\mu)} \implies rac{1}{1-\Pi(q^2,\mu)} = rac{lpha_{\mathrm{ph}}(q^2)}{lpha(\mu^2)}$$

 $\alpha_{\rm ph}$ does not depend on μ , only on q^2 .

Compute

$$\sigma(l + p \rightarrow L + X) = \int \mathrm{d}x_{\mathrm{bj}} \int \mathrm{d}Q^2 \; rac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{bj}} \,\mathrm{d}Q^2}$$

Function of

$$\xi = M^2/(2p \cdot k)$$

æ

イロト イポト イヨト イヨト

Hadron side gives $W_{\mu\nu}$

Lepton side gives

$$L^{\mu\nu} = \frac{1}{2} \operatorname{Tr} \not k \left[\not q, \gamma^{\mu}, \right] \left(\not k' + M \right) \left[\gamma^{\nu}, \not q \right]$$

Compute $W_{\mu\nu}L^{\mu\nu}$ and integrate over phase space in $x_{\rm bi}$, Q^2 plane

イロト 不得 トイヨト イヨト 二日

Total Cross Section

$$\sigma(l+p \to L+X) = \frac{1}{2\pi\alpha(\mu)}\sigma_0 \int_x^{1-\frac{2x\,m_p}{M}} \frac{dz}{z} \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha_{ph}^2(q^2) \\ \left[\left(-z^2 - \frac{z^2Q^2}{2M^2} + \frac{z^2Q^4}{2M^4} \right) F_L(x/z,Q^2) + \left(2-2z+z^2 + \frac{2x^2m_p^2}{Q^2} + \frac{z^2Q^2}{M^2} - \frac{2zQ^2}{M^2} - \frac{2x^2Q^2m_p^2}{M^4} \right) F_2(x/z,Q^2) \right].$$

$$egin{aligned} Q^2_{ ext{max}} &
ightarrow Q^2_{\uparrow} &= rac{M^2(1-z)}{z} \ Q^2_{ ext{min}} &
ightarrow Q^2_{\downarrow} &= rac{m_{ ext{p}}^2 x^2}{1-z} \end{aligned}$$

neglecting power corrections, i.e. expanding limits in mp.

Aneesh Manohar

ъ

Take the green terms and define, with μ of order *M*

$$x f_{\gamma/p}^{\mathsf{PF}}(x,\mu) = \frac{1}{2\pi\alpha(\mu)} \int_{x}^{1} \frac{dz}{z} \int_{\frac{m_{p}^{2}x^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{dQ^{2}}{Q^{2}} \alpha_{\mathrm{ph}}^{2}(q^{2}) \\ \left[-z^{2} F_{L}(x/z,Q^{2}) + \left(2 - 2z + z^{2} + \frac{2x^{2}m_{\mathrm{p}}^{2}}{Q^{2}}\right) F_{2}(x/z,Q^{2}) \right].$$

$$\begin{split} \sigma(l+p\to L+X) &= \sigma_0 x \, f_{\gamma/p}^{\mathsf{PF}}(x,\mu) + \frac{1}{2\pi\alpha(\mu)} \sigma_0 \int_x^1 \frac{dz}{z} \int_{\frac{\mu^2}{1-z}}^{\frac{M^2(1-z)}{z}} \frac{dQ^2}{Q^2} \alpha_{\mathsf{ph}}^2(q^2) \\ & \left[-z^2 \, F_L(x/z,Q^2) + \left(2 - 2z + z^2 + \frac{2x^2 m_p^2}{Q^2}\right) F_2(x/z,Q^2) \right] . \\ & + \frac{1}{2\pi\alpha(\mu)} \sigma_0 \int_x^1 \frac{dz}{z} \int_{\frac{m_p^2 x^2}{1-z}}^{\frac{M^2(1-z)}{z}} \frac{dQ^2}{Q^2} \alpha_{\mathsf{ph}}^2(q^2) \\ & \left(-\frac{z^2 Q^2}{2M^2} + \frac{z^2 Q^4}{2M^4} \right) F_L(x/z,Q^2) + \left(\frac{z^2 Q^2}{M^2} - \frac{2z Q^2}{M^2} - \frac{2x^2 Q^2 m_p^2}{M^4} \right) F_2(x/z,Q^2) \right] . \end{split}$$

2

イロト イヨト イヨト イヨト

In the remaining integrals:

- Q^2 is large, $Q^2 \gg m_p^2$
- We can replace F_i(x, Q²) by F_i(x, μ²) up to RGE corrections of order α_s(μ), α(μ) with *no large logs*
- **3** F_L is order $\alpha_s(\mu)$ and can be dropped
- $\alpha_{\rm ph}(q^2) \rightarrow \alpha(\mu)$ up to corrections of order $\alpha(\mu)$
- The integrals are now elementary and can be done explicitly

$$\sigma(I+p \to L+X) = \sigma_0 x f_{\gamma/p}^{\mathsf{PF}}(x,\mu) + \frac{\alpha(\mu)}{2\pi} \sigma_0 \int_x^1 \frac{dz}{z} \bigg|$$
$$z p_{\gamma q}(z) \left(\log \frac{M^2(1-z)^2}{z\mu^2} \right) - z^2 + 3z - 2 \bigg] F_2(x/z,\mu) + \mathcal{O}(\alpha^2, \alpha \alpha_s) \sigma_0$$

without any large logs.

$$z p_{\gamma q}(z) = 1 + (1-z)^2$$

Factorization

$$\sigma(l+p \to L+X) = \widehat{\sigma}(l+\gamma \to L+X) \otimes f_{\gamma/p} + \widehat{\sigma}(l+q \to L+X) \otimes f_{q/p} + \dots$$

Partonic cross sections:

$$\widehat{\sigma}(I + \gamma \to L + X) = \sigma_0 M^2 \delta(s - M^2)$$
$$\widehat{\sigma}(I + \gamma \to L + X) \otimes f_{\gamma/p} = \sigma_0 \xi f_{\gamma/p}(\xi)$$

$$\sigma_0 \xi f_{\gamma/p}(\xi) = \sigma(I + p \to L + X) - \widehat{\sigma}(I + q \to L + X) \otimes f_{q/p}$$

+ ...

æ

Factorization: Partonic rate

$$\sigma(l+q \to L+q) = \sigma_0 e_q^2 \frac{\alpha(\mu)}{2\pi} \left[z p_{\gamma q}(z) \left(-\frac{1}{\epsilon_{\rm IR}} + \log \frac{M^2 (1-z)^2}{z\mu^2} \right) + 3z - 2 \right]$$

$$\widehat{\sigma}(l+q \to L+q) = \sigma_0 e_q^2 \frac{\alpha(\mu)}{2\pi} \left[z \, p_{\gamma q}(z) \left(\log \frac{M^2 (1-z)^2}{z \mu^2} \right) + 3z - 2 \right]$$

From $1/\epsilon_{IR}$:

$${\cal P}_{\gamma q}=e_q^2rac{lpha(\mu)}{2\pi}p_{\gamma q}(z)$$

the log terms match up

Aneesh Manohar

э

< 🗇 🕨

Factorization

$$\sigma(I + p \rightarrow L + X) - \widehat{\sigma}(I + q \rightarrow L + X) \otimes f_{q/p} = \sigma_0 \xi f_{\gamma}(\xi, \mu)$$

$$\mathcal{F}_2(\mathbf{x}_{ ext{bj}}, \mu^2) = \sum_{q} e_q^2 \, \mathbf{x}_{ ext{bj}} \, f_{q/p}(\mathbf{x}_{ ext{bj}}, \mu) + \mathcal{O}(lpha_{\mathcal{S}}, lpha)$$

$$(-z^2+3z-2)-(3z-2)=-z^2$$

$$x f_{\gamma/p}(x,\mu) = x f_{\gamma/p}^{\mathsf{PF}}(x,\mu) + \frac{\alpha(\mu)}{2\pi} \int_{x}^{1} \frac{dz}{z} \left(-z^{2}\right) F_{2}(x/z,\mu^{2})$$
$$+ \mathcal{O}(\alpha^{2}(\mu),\alpha(\mu)\alpha_{\mathfrak{s}}(\mu))$$

This is the photon PDF in the MS scheme

Aneesh Manohar

Scalar Production: Another BSM process

$$\mathcal{L} = rac{oldsymbol{e}^2(\mu)\mu^\epsilon}{\Lambda} oldsymbol{\mathcal{S}} \, oldsymbol{\mathcal{F}}_{\mu
u} oldsymbol{\mathcal{F}}^{\mu
u}$$

The spin-averaged $\gamma\gamma \rightarrow S$ cross section to lowest order is

$$egin{aligned} \sigma(\gamma\gamma o \mathcal{S}) &= \widehat{\sigma}(\gamma\gamma o \mathcal{S}) = \sigma_0 \mathcal{M}^2 \delta(\mathcal{S} - \mathcal{M}^2) \ \sigma_0 &= rac{\pi e^4}{2\Lambda^2} \,. \end{aligned}$$

The cross section coefficient has again been called σ_0 , so the formulæ can be easily compared with the $I \rightarrow L$ case.

$$\begin{split} \sigma(\gamma + p \to S + X) &= \frac{1}{2\pi\alpha(\mu)} \sigma_0 \int_X^{1 - \frac{2x m_p}{M}} \frac{dz}{z} \int_{Q_{\min}^2}^{Q_{\max}^2} \frac{dQ^2}{Q^2} \alpha_{ph}^2(q^2) \\ & \left[\left(-z^2 - \frac{2z^2 Q^2}{M^2} - \frac{z^2 Q^4}{M^4} \right) F_L(x/z, Q^2) + \right. \\ & \left. + \left(2 - 2z + z^2 + \frac{2x^2 m_p^2}{Q^2} + \frac{2z^2 Q^2}{M^2} - \frac{2z Q^2}{M^2} + \frac{4x^2 m_p^2}{M^2} \right. \\ & \left. + \frac{z^2 Q^4}{M^4} + \frac{2x^2 Q^2 m_p^2}{M^4} \right) F_2(x/z, Q^2) \right] \end{split}$$

green terms same as before blue terms are different

Aneesh Manohar

æ

Integrate over phase space to get the total cross section:

$$\sigma(\gamma + p \to S + X) = \sigma_0 x f_{\gamma/p}^{\mathsf{PF}}(x,\mu) + \frac{\alpha(\mu)}{2\pi} \sigma_0 \int_x^1 \frac{dz}{z} \left[z p_{\gamma q}(z) \left(\log \frac{M^2(1-z)^2}{z\mu^2} \right) - \frac{3}{2} (1-z)^2 \right] F_2(\mu^2, x/z)$$

first piece is same as before second is different

08.11.2017 UCLA 40 / 53

< ロ > < 同 > < 回 > < 回 >

$$\sigma(\gamma + q \rightarrow S + q) = \sigma_0 e_q^2 \frac{\alpha(\mu)}{2\pi} \left[z p_{\gamma q}(z) \left(-\frac{1}{\epsilon_{\mathsf{IR}}} + \log \frac{M^2(1-z)^2}{z\mu^2} \right) - \frac{1}{2}z^2 + 3z - \frac{3}{2} \right]$$

$$\widehat{\sigma}(\gamma + q \rightarrow S + q) = \sigma_0 e_q^2 \frac{\alpha(\mu)}{2\pi} \left[z \, p_{\gamma q}(z) \left(\log \frac{M^2 (1-z)^2}{z\mu^2} \right) - \frac{1}{2} z^2 + 3z - \frac{3}{2} \right]$$

first piece is same as before second is different

2

イロト イポト イヨト イヨト

$$\left[-\frac{3}{2}(1-z)^2\right] - \left[-\frac{1}{2}z^2 + 3z - \frac{3}{2}\right] = -z^2$$

Difference between σ and $\hat{\sigma}$ is the same as before

Leads to the same expression for the photon PDF

$$\begin{split} x \, f_{\gamma/p}(x,\mu^2) &= \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{\frac{x^2m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha_{\text{phys}}^2(Q^2) \\ & \left[\left(zp_{\gamma q}(z) + \frac{2x^2m_p^2}{Q^2} \right) F_2\left(\frac{x}{z},Q^2\right) - z^2 F_L\left(\frac{x}{z},Q^2\right) \right] \\ & - \alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \right\} + \mathcal{O}(\alpha^2,\alpha\alpha_s) \,, \end{split}$$

< A >

PDF Operators

Collins and Soper

$$f_{\gamma}(x,\mu^2) = -rac{1}{4\pi x\,p^+}\int_{-\infty}^{\infty} dw\,e^{-ixwp^+}\,\langle p|F^{n\lambda}(wn)F^n{}_{\lambda}(0)+ ext{h.c.}\,\ket{p}_c$$

no Wilson line since a U(1) field

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

08.11.2017 UCLA

43 / 53

Define hadronic tensor in terms of one-photon-irreducible graphs.

A		
Anooc		nor
Allees	INAIO	

$$egin{aligned} f_{\gamma}(x,\mu^2) &= -rac{e^2(\mu^2)\left(\mathcal{S}\mu
ight)^{2\epsilon}}{x\,p^+}\intrac{\mathrm{d}^Dq}{(2\pi)^D}\left[2\pi\delta(q^++xp^+)+2\pi\delta(q^+-xp^+)
ight]\ &\left[(n\cdot q)g^{\lambda\mu}-q^\lambda g^{n\mu}
ight]\left[(n\cdot q)g^{\lambda
u}-q^\lambda g^{n
u}
ight]\ &rac{1}{\left(q^2\left[1-\Pi_D(q^2,\mu^2)
ight]
ight)^2}\left[W^{(D)}_{\mu
u}(p,q)+W^{(D)}_{
u\mu}(p,-q)
ight] \end{aligned}$$

Photon interacts with the proton via an electromagnetic current j^{μ} vertex.

э

• • • • • • • • • • • •

$$\begin{split} f_{\gamma}(x,\mu^2) &= \frac{8\pi}{x\alpha(\mu^2) \left(\mathcal{S}\mu\right)^{2\epsilon}} \frac{1}{(4\pi)^{D/2}} \frac{1}{\Gamma(D/2-1)} \\ &\int_x^1 \frac{\mathrm{d}z}{z} \int_{\frac{m_p^2 x^2}{1-z}}^{\infty} \frac{\mathrm{d}Q^2}{Q^2} \alpha_{\mathrm{ph,D}}^2(q^2) \left(Q^2(1-z) - x^2 m_p^2\right)^{D/2-2} \\ &\left\{ -z^2 F_{L,D}(x/z,Q^2) + \left[2 - 2z + z^2 + \frac{2m_p^2 x^2}{Q^2}\right] F_{2,D}(x/z,Q^2) \\ &- 2\epsilon z x F_{1,D}(x/z,Q^2) \right\} \end{split}$$

08.11.2017 UCLA

э

45 / 53

This formula is exact.

Split the Q^2 integral into $m_p^2 x^2/(1-z) \to \mu^2/(1-z)$ and $\mu^2/(1-z) \to \infty$

PF and conv terms

Aneesh Manohar

First part is finite. Can set $D \rightarrow 4$, and it gives $f_{\gamma}^{PF}(x, \mu^2)$. Introducing

$$s=\frac{Q^2(1-z)}{\mu^2}\,,$$

the second integral becomes

$$\begin{split} f_{\gamma}^{\text{con}}(x,\mu^2) &= \frac{\left(\mathcal{S}\mu\right)^{-2\epsilon}}{2\pi x \alpha(\mu^2)\mu^{2\epsilon}} \frac{e^{\epsilon\gamma_E}}{\Gamma(1-\epsilon)} \int_x^1 \frac{\mathrm{d}z}{z} \int_1^\infty \frac{\mathrm{d}s}{s^{1+\epsilon}} \\ &\alpha_{\text{ph,D}}^2(-\mu^2 s/(1-z)) \bigg\{ -z^2(1-\epsilon) F_{L,D}(x/z,\mu^2 s/(1-z)) \\ &+ \left[2-2z+z^2-\epsilon z^2\right] F_{2,D}(x/z,\mu^2 s/(1-z))\bigg\} \end{split}$$

The factor of $(1 - z)^{D/2-2}$ has cancelled. Single scale integral with no large logs.

イロト イヨト イヨト イヨト

Expand in perturbation theory and evaluate:

$$\begin{split} f_{\gamma}^{\text{con}}(x,\mu^2) &= \frac{\alpha(\mu^2)}{2\pi x} \int_x^1 \frac{\mathrm{d}z}{z} \bigg\{ \frac{1}{\epsilon} \left[2 - 2z + z^2 \right] F_2(x/z,\mu^2) \bigg\} \\ &- z^2 F_2(x/z,\mu^2) \bigg\} \,, \end{split}$$

Can extend this to higher order.

< 6 b

- B

Scale Variation

Aneesh Manohar

08.11.2017 UCLA 49 / 53

2

μ Dependence

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} f_{a} = \sum_{b} P_{ab} \otimes f_{b},$$
$$P_{ab} = \sum_{r,s} \left(\frac{\alpha_{s}}{2\pi}\right)^{r} \left(\frac{\alpha}{2\pi}\right)^{s} P_{ab}^{(r,s)}$$

- Since we have an expression for f_γ(x, μ²), can compute μ derivative
- Derivative of $1/\alpha(\mu^2)$ gives $\beta_e f_{\gamma}$ with correct sign
- integrand at upper limit
- Derivative of MS conversion term
- Write $F_{2,L}$ in terms of $C_{2,L,a} \otimes f_a$ using QCD pert. theory at μ .
- Compare both sides

Get the order α splitting functions

$$P_{\gamma q}^{(0,1)} = p_{\gamma q}(x) = rac{1 + (1 - x)^2}{x}, \qquad P_{\gamma \gamma}^{(0,1)} = \beta^{(1,0)} \delta(1 - x)$$

and the order $\alpha \alpha_s$ ones:

$$\begin{aligned} P_{\gamma\gamma}^{(1,1)} &= \beta^{(1,1)} \delta(1-x) \\ P_{\gamma q}^{(1,1)} &= C_F e_q^2 \bigg[-3\ln(1-x)p_{\gamma q}(x) - \ln^2(1-x)p_{\gamma q}(x) + \bigg(2 + \frac{7}{2}x\bigg)\ln x \\ &- \bigg(1 - \frac{1}{2}x\bigg)\ln^2 x - 2x\ln(1-x) - \frac{7}{2}x - \frac{5}{2} \bigg] \\ P_{\gamma g}^{(1,1)} &= T_F \left(\sum e_q^2\right) \bigg[-16 + 8x + \frac{20}{3}x^2 + \frac{4}{3x} - (6 + 10x)\ln x \\ &- 2(1+x)\ln^2 x \bigg] \end{aligned}$$

agrees with de Florian et al Eur. Phys. J. C76 (2016) 282.

Two loop splitting functions from a one-loop calculation.

Aneesh Manohar

Other results

The f_{γ} PDF equation is *exact* to all orders in QED and QCD.

Have computed:

- The MS conversion term to one higher order
- f_{γ} to one higher order (NNLO)
- The 3-loop splitting functions $P_{\gamma i}$
- The photon TMDPDF
- Polarized photon PDF $f_{\Delta\gamma}(x, \mu^2)$ in terms of the polarized proton structure functions $g_{1,2}$.

Conclusions

- Have a formula for the photon PDF which is exact to all orders in QED and QCD
- Determine photon PDF with high precision (1–2%)
- Involves high and low Q² (including elastic) data
- Derived the two-loop αα_s splitting functions using a formula with one-loop inputs.
- Available on LHAPDF
- This is a *calculation* of the photon PDF, with an error reduction of 40 relative to older results.
- Extended to one higher order

3

4 E N 4 E N