PHOTON-NUMBER-RESOLVING IMAGERS AND SENSORS BASED ON SUPERCONDUCTING NANOWIRES

Karl K. Berggren

berggren@mit.edu

Massachusetts Institute of Technology

Volume 24, Number 3

March, 1936

TECHNICAL PAPERS

THE SECONDARY EMISSION MULTIPLIER—A NEW ELECTRONIC DEVICE*

HOW TO DETECT A PHOTON WITH A SUPERCONDUCTOR?

Why are Superconductors Interesting?

- Zero resistance
- Exclusion of magnetic field
- Strong nonlinearity

Why are Superconductors Interesting?

- Zero resistance
- Exclusion of magnetic field
- Strong nonlinearity

Analog Amplifiers

Comparison-Based Device

Comparison-Based Device

Comparison-Based Device

Detector metrics

E.E. Wollman et al, Optics Express 25, 26792 (2017) (JPL group)

Dark counts of 6 counts per day were demonstrated at 4K.

Applications

Space Communications

LIDAR Lincoln Lab/JPL

Zhou et al., Opt. Expr. 23, 14603 (2015)

Quantum walk/simulation

Crespi, et al., Nat. Photon 7, 322-328 (2013)

Single-photon spectrometer

Kahl, et al., arXiv:1609.07857 (2016)

DEVICE OPERATION

111ii

Detection Mechanism

Critical Temperature ~ 11 K

Ē

Absorption

Critical Temperature ~ 11 K

2017-12-13-argone-quantum-sensors-16

A. D. Semenov, G. N. Gol'tsman, and A. A. Korneev, "Quantum detection by current carrying superconducting film," *Physica C, vol. 351*, pp. 349–356, 2001.

|||iT

Breakdown

Critical Temperature ~ 11 K

resistive barrier spans nanowire

141iT

Acceleration/Heating

Critical Temperature ~ 11 K

resistance grows from heating

IIIIT

Diversion of Current

Critical Temperature ~ 11 K

Cooling

Critical Temperature ~ 11 K

superconductivity is restored

Reset

Critical Temperature ~ 11 K

bias current is restored

Kerman, Dauler, Keicher, Yang, KB, Gol'tsman, Voronov, Applied Physics Letters, (2006) 2017-12-13-argone-quantum-sensors-21

Spatial and temporal detection in a wire

Photon position and arrival time can be detected **simultaneously**!

Similar readout architectures in other detector arrays

micro-channel plate (MCP) using delay lines for imaging

Neutron imager using delay lines

http://www.roentdek.com/

*O. Jagutzki et al., Nucl. Instruments Methods Phys. Res. Sect. A **477**, 244–249 (2002)

*T. Ishida, *et.al., J. Low Temp. Phys.*, vol. 176, no. 3–4, pp. 216–221, 2014.

Two connectors for one imager (>500 pixels)

No cryogenic circuit is required

Mapping each photon position to form an image

~590 effective pixels (with 2 lines) spatial-resolution (H: 5.6 μm, V: 13.0 μm) 50 ps photon detection jitter Maximum counting rate (2M counts/sec) Efficiency is not optimized

Q.-Y. Zhao, et.al., "Single-photon imager based on a superconducting nanowire delay line". Nature Photonics 11 (4), 247-251

Can We Observe Two-Photon Coincidences?

- Assume a pulsed source of photons (not continuous wave sources)
- Assume light will be coupled in via waveguides (not free space)

Delay-line Multiplexing

Nanowire microstrip transmission line

Delay line multiplexing

I6-Element-detector chain

D Zhu, et. al, CLEO 2017: Applications and Technology, JTh5B. 4

What Have We Learned?

- SNSPDs provide a unique blend of performance across a wide range of metrics
- 2. Imaging and time-stamping is enabled by their interesting microwave characteristics

Where Are We Going?

- 1. Photon-number resolution
- 2. Large imaging arrays
- 3. Even-shorter jitter
- 4. Integration with quantum-limited amplifiers for readout

Superconductivity Team in QNN Group

Qing-Yuan Zhao (Now Prof., Nanjing U.)

Andrew Dane (NASA Fellow)

Reza Baghdadi (Post-Doc)

Emily Toomey (NSF Fellow)

Di Zhu (A*Star Fellow)

Brenden Butters (Grad Student)

Murat Onen (Grad Student)

Graduated/Former

Nathan Abebe Lucy Archer Francesco Bellei Ignacio Estay Forno Niccolo Calandri Yachin Ivry Adam McCaughan Faraz Najafi Kristen Sunter Hao-Zhu Wang

SUPPORT

- U.S. Air force Office of Scientific Research
- U.S. Office of Naval Research
- DARPA

- IARPA
- NASA
- NSF
- Many U.S. and international fellowships

Quantum Electron Microscopy

Karl K. Berggren¹, Dept. of EECS

Chung-Soo Kim¹, Richard G. Hobbs¹, Yujia Yang¹, Vitor R. Manfrinato¹, Orhan Celiker¹, Navid Abedzadeh¹, Akshay Agarwal¹, Wenping Li¹, Qingyuan Zhao¹, Corey Cleveland¹, Marco Turchetti¹, Mehmet F. Yanik¹ and Pieter Kruit²

¹Massachusetts Institute of Technology ²Delft University of Technology

Interaction-Free Measurement (with Photons)

beam splitter

beam mirror

A. C. Elitzur & L. Vaidman "Quantum mechanical interaction-free measurements" *Found. Phys.*, **1993**, *23*, 987

Interaction-free measurement success probability: 25%

Illii Electron-Beam Induced Damage

Carlson, D. B.; Evans, J. E. Low-Dose Imaging Techniques for Transmission Electron Microscopy. In The Transmission Electron Microscope; Khan, M., Ed.; Intech, 2012.

Grubb and Keller (1972) - Irradiation received by the specimen during a single recording equivalent to a 10 megaton hydrogen bomb exploding at a distance of 30 meters away

Cryo-Electron Microscopy

Structural determination of GroEL protein complexes : Milne et al., FEBS J. 2013 January; 280 (1): 28-45

- 2-D projections of particles used to construct 3-D image which is then fitted to existing atomic model; resolution of up to 3 Å achieved
- Susceptible to particle inhomogeneity and chemical non-uniformity; requires many identical particles for averaging; sample still frozen!

Interaction-Free Measurement (with Electrons)

PHYSICAL REVIEW A 80, 040902(R) (2009)

Noninvasive electron microscopy with interaction-free quantum measurements

William P. Putnam and Mehmet Fatih Yanik* Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 20 January 2009; published 23 October 2009)

We propose the use of interaction-free quantum measurements with electrons to eliminate sample damage in electron microscopy. This might allow noninvasive molecular-resolution imaging. We show the possibility of such measurements in the presence of experimentally measured quantum decoherence rates and using a scheme based on existing charged particle trapping techniques.

Putnam & Yanik proposed interaction-free measurement with

DOI: 10.1103/PhysRevA.80.040902

Electron microscopy has significantly impacted many areas of science and engineering due to its unprecedented atomic and molecular resolution. Yet, the imaging of biological and other sensitive specimens has been limited because

Imagine an electron propagating around the rings. The electron wave function can be separated into an angular θ -dependent portion and a planar (r,z)-dependent part. Due to the double-well potential, the two lowest-energy states of

RAPID COMMUNICATIONS

PACS number(s): 07.78.+s, 42.50.Dv

Interaction-Free Measurement

probability-amplitude builds up coherently (~ quadratic)

Kwiat, P. et al. Phys. Rev. Lett. 1995, 74, 4763-4766.

2017-12-13-argone-quantum-sensors-43

Interaction-Free Measurement

probability-amplitude loss to sample builds up only linearly

Kwiat, P. et al. Phys. Rev. Lett. 1995, 74, 4763–4766.

```
2017-12-13-argone-quantum-sensors-44
```

IIIT Efficient Interaction-Free Measurement

P. Kruit, R.G. Hobbs, C-S. Kim, Y. Yang, V.R. Manfrinato, J. Hammer, S. Thomas, P. Weber, B. Klopfer, C. Kohstall, T. Juffmann, M.A. Kasevich, P. Hommelhoff, K.K. Berggren. "<u>Designs for a quantum electron microscope.</u>" Ultramicroscopy 164, 31-45 (2016)

IIIT Characterization of Beam Splitter

IIII Challenges & Goals for QEM Cavity

Electron optics

- Aberrations propagate for multiple circulations
- Loss in beamsplitter
- Coherence loss in couplers

Imaging

• QEM supports only binary black & white imaging

S. Thomas et al., Phys. Rev. A 2014, 90, 053840.

Interaction-free imaging with electrons

Requires Mach-Zehnder interferometer

IIIT Nano Mach-Zehnder for Electrons

MZ Interferometry with Electrons

Integrated Electron Cavity in FE-SEM

- Electron cavity development for "interaction-free" electron microscopy
- Proof of principle electron interferometer for interaction-free measurement
 - Fabrication from single monolithic crystal of silicon
 - Installation in conventional TEM
- Presence of multi-pass electron microscope could be of interest in sensing small phase shifts in electrons for HEP (?)

Ē

People at MIT

Richard Hobbs Post-Doc/Assistant to the Baron

Yujia Yang Grad Student Grating guy

Chung-Soo Kim Post-doc/QEM Baron

Orhan Celiker Fatih Yanik Grad Student Collaborator

Wenping Li Visiting Professor

Qingyuan Zhao Post-Doc

Corey Cleveland Undergraduate Nanosecond input

Marco Turchetti Visiting Student Aligner of Beams

Navid Abedzadeh Grad Student with mirror potential

Stanford:

Josh Francis, Thomas Juffmann, Catherine Kealhofer, Brannon Klopfer, Christoph Kohstall, Gunnar Skulason, Mark Kasevich

MPQ/Erlangen:

J. Hoffrogge, S. Thomas, J. Hammer, D. Ehberger, S. Heinrich, P. Weber, Peter Hommelhoff

TU Delft: Maurice Krielaart, Pieter Kruit

We acknowledge financial support from Gordon and Betty Moore Foundation