"Quantum Sensing for Particle Physics" Some Basic Theory - Some Basic Experiment - Overview - Example

Resonance

It takes time...

Why?

Need to measure frequencies

Clock rates can depend on certain physics

Why?

Spin Precession

Two level systems —> Spin Systems ¹³³Cs hyperfine Atomic clock

Magnetometer

Interferometer

"Spin" Precession

 $\Delta U \propto$ gravity, etc.

M. Schleier-Smith

Bloch Sphere

$|\theta, \phi\rangle = \sin(\theta/2) | + \cos(\theta/2)e^{i\phi} | >$

We are interested in measuring φ

Phase Precession Measurement from Population Measurement

Ramsey spectroscopy with an ensemble of *N* two-level atoms:

Read out S_7

 $S_z \propto N_{\uparrow} - N_{\downarrow}$

M. Schleier-Smith

Q-function

$Q(\theta,\phi) \equiv [(2r+1)/4\pi] \langle \theta,\phi | \rho | \theta,\phi \rangle$

where ρ is an arbitrary density matrix for a system of identical two-level atoms; it can be a ρ_D of Eq. (2) or a ρ_B of Eq. (3). Except for the factor $(2r+1)/4\pi$, the same function has been discussed by Gilmore, Bowden, and Narducci,⁷ and called the Q function or the Q representation; it has also been used by Lieb⁸ to discuss the "classical" entropy for a quantum system described in Bloch coherent spin

C.T. Lee, PRA, v30, n6, 1984

Bloch Sphere - N uncorrelated spins

When this particle's spin is measured, the answer is \uparrow with probability $P_{\uparrow}=|lpha|^2$, and \downarrow with probability $P_{\downarrow} = |eta|^2$. When this measurement is repeated N times (or equivalently, with N uncorrelated spins), the statistics are binomial: the average number of \uparrow s is $\langle N_{\uparrow} \rangle = N |\alpha|^2$ and the variance is $\langle N_{\uparrow}^2 \rangle = N |\alpha|^2 (1 - |\alpha|^2)$.

- 1.00
- 0.75
- 0.50
- 0.25
- 0.00 Ν

 $\Delta \Phi \sim 1/N^{1/2}$

- -0.25
- -0.50
- -0.75
- -1.00

 $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle.$

(1)

Phase Precession Measurement from Population Measurement

Ramsey spectroscopy with an ensemble of *N* two-level atoms:

M. Schleier-Smith

Take Home Message for All Precision Measurements So Far

Shift

Energy $\Delta \omega \sim 1/(T \bullet N^{1/2})$ Signal Coherence Time

Typical line split ~10⁻⁶

A. Vutha

Bloch Sphere - N/2 correlated spins pairs

1.00

0.75

N

When this pair of particles is measured, the answer is $\uparrow\uparrow$ with probability $P_{\uparrow\uparrow} = |lpha|^2$, and $\downarrow \downarrow$ with probability $P_{\downarrow \downarrow} = |\beta|^2$. When the measurement is repeated N/2 times (or equivalently, with N/2 uncorrelated spin pairs), the average number of \uparrow s is $\langle N_{\uparrow} \rangle =$ $2\frac{N}{2}|lpha|^2 = N|lpha|^2$ as before. But the variance is now $\langle N^2_{\uparrow} \rangle = 4\frac{N}{2}|lpha|^2(1-|lpha|^2) =$ $2N|\alpha|^2(1-|\alpha|^2)$. (Basically, this is a binomial random walk with half the number of steps and twice the step length.)

Linear Combination of Fully Stretched **N** Particles

$\Delta \Phi \sim 1/N$

SPIN SQUEEZING APPLIED TO FREQUENCY STANDARDS. JJ Bollinger, DJ Wineland, WM Itano, DJ Heinzen

Proceedings of the Fifth Symposium on Frequency Standards

 $|\Psi\rangle = \alpha |\uparrow\uparrow\rangle + \beta |\downarrow\downarrow\rangle.$

(2)

Bloch Sphere - Squeezed State

$\Delta \Phi \sim 1/N^{1/2}$

Squeezed atomic states and projection noise in spectroscopy D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen Phys. Rev. A **50**, 67 – Published 1 July 1994

 $\Delta \Phi < 1/N^{1/2}$

Squeezed spin states Masahiro Kitagawa and Masahito Ueda Phys. Rev. A **47**, 5138 – Published 1 June 1993

Bloch Sphere -Squeezed State

SSS = squeezed spin state CSS = coherent spin state

Quantum spin squeezing Jian Ma, Xiaoguang Wang, C.P. Suna, Franco Nori Physics Reports, 2011

Phase Precession Measurement from Population Measurement

z d y x y

Free evolution: T

 $\pi/2$ pulse

F. Nori

One slide on how one can spin squeeze

- measures S_z
- population (collective)
- not single atoms
 - . . .
- cavity resonance shift

cavity resonance M. Schleier-Smith is shifted by atoms

J. Thompson

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms Nature 2016 Onur Hosten¹, Nils J. Engelsen¹, Rajiv Krishnakumar¹ & Mark A. Kasevich¹

Equivalent to Factor of 10 **Increase in Counts**

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms Nature 2016 Onur Hosten¹, Nils J. Engelsen¹, Rajiv Krishnakumar¹ & Mark A. Kasevich¹

Also see Mitchell, Vuletic, Schleier-Smith, Takahashi, others....

Equivalent to Factor of 10 **Increase in Counts**

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms Nature 2016 Onur Hosten¹, Nils J. Engelsen¹, Rajiv Krishnakumar¹ & Mark A. Kasevich¹

Also see Mitchell, Vuletic, Schleier-Smith, Takahashi, Thompson, others.... Spin Squeezing of a Cold Atomic Ensemble with the Nuclear Spin of One-Half Can a Quantum Nondemolition Measurement Improve the Sensitivity T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi Phys. Rev. Lett. 102, 033601 - Published 22 January 2009 of an Atomic Magnetometer?

M. Auzinsh, D. Budker, D. F. Kimball, S.M. Rochester, J. E. Stalnaker, A.O. Sushkov, and V.V. Yashchuk Simultaneous tracking of spin angle and amplitude beyond classical limits Giorgio Colangelo, Ferran Martin Ciurana, Lorena C. Bianchet, Robert J. Sewell & Morgan W. Mitchell

Deterministic Squeezed States with Collective Measurements and Feedback

Kevin C. Cox, Graham P. Greve, Joshua M. Weiner, and James K. Thompson JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA

Equivalent to Factor of 10 **Increase in Counts**

Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, and M. W. Mitchell Phys. Rev. Lett. 109, 253605 – Published 19 December 2012

Quantum Engineering with Cold Atoms

Which many-particle entangled states are useful for precision measurements?

How can we engineer interactions to generate and harness entanglement?

How will we push quantum sensors to their fundamental limits?

Monika's Talk

M. Schleier-Smith

Resonance is Useful for Finding New Physics

Top AlGaAs Bragg Mirror

Ē ×

AlGaAs Bragg Mirror BAW mechanical oscillator & Terfenol Collar

Flux Qubit

Atoms/Molecules are All the Same

Often Couple to these systems by EM

Methods of probing

Field of unknown particles

New Physics Couples in Many Ways

Methods of probing

Gravity Waves

Using spins to detect gravity waves Lukin and Walsworth (Harvard), Hogan (Stanford), Ye (JILA), Many others

Gravity Waves

Sushkov (BU), Budker (UCB/Mainz), Graham (Stanford), Rajendra (UCB)

Directional Detection of Low-Mass WIMPs

Fig. 1. Probing fundamental physics with resonance experiments.

Ron Walsworth (Harvard) Alex Sushkov (Boston University) Surjeet Rajendran (UC Berkeley) Misha Lukin (Harvard)

 $1/\alpha \, d\alpha/dt$ ($10^{-16}/year$)

Review Papers

Search for New Physics with Atoms and Molecules

M.S. Safronova^{1,2}, D. Budker^{3,4,5}, D. DeMille⁶, Derek F. Jackson Kimball⁷, A. Derevianko⁸ and C. W. Clark²

¹University of Delaware, Newark, Delaware, USA, ²Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland, USA,

³Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany,
⁴University of California, Berkeley, California, USA,
⁵Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁶Yale University, New Haven, Connecticut, USA,
⁷California State University, East Bay, Hayward, California, USA,
⁸University of Nevada, Reno, Nevada, USA

REVIEW

Probing the frontiers of particle physics with tabletop-scale experiments

David DeMille,¹* John M. Doyle,²* Alexander O. Sushkov^{3,4}*

Science 2017

The "Standard Model" Does Not Explain Everything about Particle Physics Standard Model 9) (b)Z $(e) (\mu) (\tau)$ (Vr) (\mathcal{V}_{τ}) Book Ve

The "Standard Model" Does Not Explain Everything about Particle Physics

Key Unresolved Questions

The "Standard Model" Does Not Explain Everything about Particle Physics

Standard Model

Key Unresolved Questions

Dark Matter

Matter-Anti Matter

Hierarchy "Problem"

Several SUSY Theories Solve all Problems

Matter/Antimatter
-naturally provides needed T-violation

Unification/Hierarchy
provides needed particles

Dark Matter
provides candidate particle

Several SUSY Theories Solve all Problems

Matter/Antimatter
-naturally provides needed T-violation

Unification/Hierarchy
provides needed particles

Dark Matter
provides candidate particle

Several SUSY Theories Solve all Problems

Matter/Antimatter $\stackrel{\frown}{\propto}$ -naturally provides needed T-violation

Unification/Hierarchy $\stackrel{\frown}{\simeq}$ - provides needed particles

Dark Matter $\stackrel{\frown}{\simeq}$ - provides candidate particle

Gabriesle group confirms SM QED ppt

Effect $\propto 1/M^2$

More Loops, higher order perturbation

Electron is dressed by Virtual Particles — New Physics

Electron is dressed by Virtual Particles — New Physics

SUSY 1st order perturbation Cancellations not inherent T-violating phase natural

EDM is SM Background Free!

Where we are going with precision measurement... one PREVIEW

EDMs — Beyond the Standard Model Particle Physics

EDMs are capable of probing high energy scales, with a sensitivity unmatched by any signals from the LHC, within the framework of a very broad range of theoretical models—and particularly in the most widely-studied and broadly predictive models, such as SUSY. Heavy, polar molecule sensitive to new physics

- 10⁶ molecules
- 10 s coherence
- Large enhancement(s)
- I day averaging

M_{new phys} ~ 1,000 TeV

Numerical Value of the electron EDM from New Particle **Dimensional Analysis** Assume $f^2/hc \approx \alpha$ $sin(\Phi) \approx 1$ $m_{\chi} \approx 100 \text{ GeV}$

 $EDM \approx \mu_{\rm B} \, (\alpha/\pi)^{\rm N} \, (m_e/m_{\chi})^2 \sin(\Phi)$

 $EDM \approx 10^{-25} e cm$

Numerical Value of the electron EDM from New Particle **Dimensional Analysis** Assume $f^2/hc \approx \alpha$ $sin(\Phi) \approx 1$ $m_{\chi} \approx 100 \text{ GeV}$

EDM $\approx \mu_B (\alpha/\pi)^N (m_e/m_\chi)^2 \sin(\Phi)$

$EDM \approx 10^{-25} e cm$

calculated 1-loop EDM ≈ 100x 20 year old limit

EDM Too Small??

Assume $f^2/hc \approx \alpha$ $sin(\Phi) \approx 1$ $m_{\chi} \approx 100 \text{ GeV}$

EDM $\approx \mu_B (\alpha/\pi)^N (m_e/m_\chi)^2 \sin(\Phi)$

 $EDM \approx 10^{-25} e cm$

calculated 1-loop EDM ≈ 100x previous limit

SUSY was constrained near 1 TeV level before the LHC was built. Escape clause: very small Φ possible.

eEDM probes Stop particle Yuichiro Nakai and Matthew Reece

$$m_{\tilde{t}_1} > 1.6 \,\mathrm{TeV}$$

Implications for baryon asymmetry...?

sin(ϕ_{M_1})

Last viable corner for **Electroweak Baryogenesis** (a testable model for matter/antimatter asym)...?

"Bino-driven EWBG" can elude EDM limit, but...

requires non-universal SUSY CP phases ($\varphi_2=0$)

~10x improvement may rule out Electroweak Baryogenesis...?

Add the eEDM - Levels Shift, Electron Spin Precesses

Zeroth Order EDM Measurement

Just measure the precession of the spin?

How to measure eEDM:

I) Polarize spin

2) Place E and B field

 $\phi = 2(\mu B + d_e \mathcal{E}_{eff})\tau/\hbar + other pertubations, phase shifts)$ Wait a time τ ($\tau = 1 \text{ ms}$) 4) Measure phase

Standard Procedure AMO Spin Projection Measurement

Zeroth Order EDM Measurement

Just measure the precession of the spin?

To determine

$$\oint_{edm} = 10 \ \mu \ rad \ for \ d_e = 10^{-28} \ e-cm$$

One would need

Standard Procedure AMO - magnetic field absolute value to 10⁻⁷ gauss (but known to only around 10⁻⁵ gauss) Spin Projection and Measurtement

- magnetic moment to the 10⁻⁶ fractional level

How to measure eEDM:

I) Polarize spin

2) Place E and B field

 $\phi = 2(\mu B + d_e \mathcal{E}_{eff})\tau/\hbar + other pertubations, phase shifts 3 Wait a time \tau$ $(\tau = 1 ms)$ 4 Measure phase

What is a "Switch" ?

Do the experiment twice with an electric field "switch"

$P_{-} = (4 \frac{d_e E_{eff}}{d_e E_{eff}} + g \mu_b B_{E-corr} + \eta \mu_b E_{nr} |B| + ...) \tau / \hbar$

 $\mathbf{P}_{-} \equiv \phi_{E,B} = (2g\mu_b B + 2d_e E_{eff} + ...)\tau/\hbar \qquad \qquad \phi_{-E,B} = (2g\mu_b B - 2d_e E_{eff} + ...)\tau/\hbar \qquad = (4d_e E_{eff} + ...)\tau/\hbar$

Optical Trap

Argonne Nuclear EDM

electron edm - d_e

Imperial d_e <1.05 x10⁻²⁷ e·cm, 2011 ACME, d_e <8.7x10⁻²⁹ e·cm, 2013 JILA d_e <1.3x10⁻²⁸ e⋅cm, 2017

2025

Experiment	One Day Statistical Sensitivity e-cm day- ^{1/2}	Published Limit d _e < in e-cm	Year
Berkeley TI	0.5 x 10 ⁻²⁷	1.6 x 10 -27	2002
Imperial YbF	2 x 10 ⁻²⁷	1.5 x 10 ⁻²⁷	2010
ACME I ThO	1 x 10- 28	0.9 x 10 ⁻²⁸	2013
JILA HfF+	2 x 10 ⁻²⁸	1.3 x 10 -28	2017

Reality Check! Point of Interest

One Day Statistical Sensitivity e-cm day- ^{1/2}	Published Limit d _e < in e-cm	Year
0.5 x 10 ⁻²⁷	1.6 x 10 -27	2002
2 x 10 ⁻²⁷	1.5 x 10 ⁻²⁷	2010
1 x 10-28	0.9 x 10 -28	2013
2 x 10-28	1.3 x 10 -28	2017
	One Day Statistical Sensitivity e-cm day-1/2 0.5 x 10-27 2 x 10-27 1 x 10-28 2 x 10-28	One Day Statistical Sensitivity e^- cm day-1/2Published Limit d_e < in e-cm

Reality Check! Point of Interest

One day sensitivity quotes are the same, historically, to eventual published limits!!

Probing New Physics: How do EDMs Compare?

EDMs: exclude stops at 2-3 TeV, with order-1 CPV, $m_A = 400 \text{ GeV}$ (Nakai, Reece)

> EDM signal would be clean, i.e. no background.

Flavor Physics: strong constraints from kaons, but 2.8 σ hint of new physics in ϵ'/ϵ

Not clean: unclear how seriously we take this! (Difficult lattice QCD calculations.)

LHC: Exclude stops at 1 TeV for typical decay chains

SUSY interpretation: e.g. Crivellin, D'Ambrosio, Kitahara, Nierste '17

Breadth of new physics versus depth of mass reach

Genericity

How to do better?

Planned improvements at Argonne, JILA, ACME, Imperial....

My Personal Perspective

- •Right now we are improving statistical sensitivity. Hard work, need smart people, requires serious resources...
- Progress toward next x10 improvement is good for many AMO based EDM experiments.
- •But what about the future? What about 1000 TeV??

My Personal Perspective

- •Right now we are improving statistical sensitivity. Hard work, need smart people, requires serious resources...
- Progress toward next x10 improvement is good for many AMO based EDM experiments.

Time

•But what about the future? What about 1000 TeV?? **10³ improvement in EDM** sensitivity possible for some experiments...

...but needs new molecule AND using T < mK methods

Effective

Electric Field

My Personal Perspective

- •Right now we are improving statistical sensitivity. Hard work, need smart people, requires serious resources...
- Progress toward next x10 improvement is good for many AMO based EDM experiments.

Time

•But what about the future? What about 1000 TeV?? **10³ improvement in EDM** sensitivity possible for δd_{ρ} some experiments...

...but needs new molecule AND using T < mK methods

Effective

Electric Field

...but needs new, creative methods

My Advice to You

The Graduate 1967, starring Dustin Hoffman, dir. Mike Nichols

Symmetry violation in Molecules

Molecules have enhanced sensitivity to many BSM sources

- Electron EDM
- Nuclear Schiff moment
- Nuclear magnetic quadrdupole moment (MQM)
- PV/anapole moments
- ... and more!

Let's apply our methods to new sources

Creating Cold Molecules

CaF Source (Buffer gas cooling)

Laser Slowing

2K

Tarbutt, DeMille, Doyle

Very Recent Developments

RF MOT

Sub - Doppler Cooling

300 uK

CaF Ultracold "Real" Molecules now Available Increasing Phase space Density

RF MOT Intensity Ramp

CaF Molecules Towards Quantum Simulation and Can Be Held in Computation "Clock" Type Trap **1D Optical Tweezer Array**

Optical Dipole Trap

Doyle Group

Optical Lattice

Rearrangement Procedure

Clusters of 2

	54		12	 				 1.1		 				 **	3.4			48	**	1.1	**
		• 1		 - 41		(0)		 		 49		18		 **	**	. **	**			**	**
		**	• •	 . 19	. 69		**	 		 890	. 8.8		1.64	 100	**	60	**		18	***	**
_				 1.3		2442	166	 	1.1	 10.0	**			 			**			3.4.1	

Clusters of 10

*********		********	****** ***	*********
********		********	********	******
********	tarantees.	********	********	*******
*********		*********	*********	********

		.	***		•			52.5								• • •	*		
and seal of the seal of the		*			1				1.4		•		¥.,	1.		. *.			1.13
States and the states of the states	1.		*				* * C.		•				•	1.					17.25
		**	1.0	1.4		1.1	1.	22.2		**		4			**		1 ×	1.6.2	4 . A S

Manuel Endres, Hannes Bernien, Crystal Senko, Alexander Keesling, Harry Levine, Eric Anschuetz, CUA collaboration of Lukin, Greiner & Vuletic groups;

. 8. 25 8. 1. 1.

Atom Array

Molecular Quantum Simulation and Clocks Possible

Polyatomic Quantum Simulator à la Jin and Ye

What do Polyatomic Molecules Have to do with Particle Physics ?

What do Polyatomic Molecules Have to do with **Particle Physics** ?

Quite a bit, it turns out...

Phys. Rev. Lett. 119, 133002, September 2017, Hutzler and Kozyryev

Embrace the Complexity - Particle Physics

Needs for an EDM Molecule Must orient in lab frame - need a "handle" Must have heavy atom - need relativistic enhancement WANT photon cycling - laser cool - 100% detection Long Lifetime (> 1s) A whole class o polyatomics have it ALL. Phys. Rev. Lett. **119**, 133002 – Published 28 September 2017

Feature	ThO, ACME	(Yb,Ba, Ra)F	WC	(Hf,Th)F ⁺ JILA ION
Laser cooling	×	\checkmark	×	×
Full polarization	\checkmark	×	\checkmark	\checkmark
Internal co-mag.	\checkmark	×	\checkmark	\checkmark
>1 s lifetime	×	\checkmark	\checkmark	\checkmark
Scalable (Large #)	\checkmark	\checkmark	\checkmark	×

Polyatomic EDM

	Diatomics			Poly- atomics	Polyatomic ED			
Feature	ThO, ACME	(Yb,Ba,Ra)F	WC	(Hf,Th)F ^{+,} JILA ION	YbOH, YbOCH3 etc.			
Laser cooling	×	\checkmark	×	×		Yb		
Full polarization	\checkmark	×	\checkmark	\checkmark				
Internal co-mag.	\checkmark	×	\checkmark	\checkmark				
>1 '	X		5	\checkmark				
Sca				×				

à la Ye and Katori Phys. Rev. Lett. 119, 133002 – Published 28 September 2017

Diatomics

Feature	ThO, ACME	(Yb,Ba,Ra)F	WC
Laser cooling	×	\checkmark	X
Full polarization	\checkmark	×	\checkmark
Internal co-mag.	\checkmark	×	\checkmark
	¥	1	1

>]

Sca

à la Ye and Katori

Phys. Rev. Lett. 119, 133002 – Published 28 September 2017

Diatomics

Feature	ThO, ACME	(Yb,Ba,Ra)F	WC
Laser cooling	×	\checkmark	×
Full polarization	\checkmark	×	\checkmark
Internal co-mag.	\checkmark	×	\checkmark
>1 s lifetime	×	\checkmark	\checkmark
Scalable (Large #)	\checkmark	\checkmark	\checkmark

Sensitivity to EDM 10⁻³² e cm

Phys. Rev. Lett. 119, 133002 – Published 28 September 2017

Diatomics

Feature	ThO, ACME	(Yb,Ba,Ra)F	WC
Laser cooling	×	\checkmark	×
Full polarization	\checkmark	×	\checkmark
Internal co-mag.	\checkmark	×	\checkmark
>1 s lifetime	×	\checkmark	\checkmark
Scalable (Large #)	\checkmark	\checkmark	\checkmark

WHAT DOES Sensitivity THIS MEAN TO to EDM PARTICLE 10⁻³² e cm **PHYSICS**?

Phys. Rev. Lett. 119, 133002 – Published 28 September 2017

EDMs accompanying new flavor violation

Finally, a word from our sponsors about ACME

DeMille Doyle Gabrielse

ACME II Currently running **Projected**_{ACME} II statistical sensitivity

> standard model SUSY variants generic models

Seesaw Neutrino Yukawa Couplings

10⁻³²

10⁻³¹

Exact Universality

10⁻⁴⁰

10⁻⁴¹

10⁻³³

d_e (e cm)

The ACME team

Paul Hess

Brendon Spaun O'Leary

Cris Panda

Emil **Kirilov**

Ben

Amar Vutha

Yulia Gurevich

JMD

Jacob Baron

Nick Hutzler Elizabeth Petrik

Adam West

CM

Wes Campbell

Ivan Kozyryev

Max Parsons

Gabrielse

DeMille

Status of ACME

ACME Collaboration 12/9/2017

Status of ACME II

- 1 year of systematic checks data
- >200 runs, 50000 blocks, 3000 superblocks
- 15 TB of systematic check data
- 40 parameters checked for systematic dependence
- 3 systematics understood and under control with contributions significantly under statistical sensitivity
- Many additional measurements such as:
 - Suppression of E-correlated phases by the N switch
 - Measurement of leakage current
 - STIRAP phases investigations \bullet
 - Magnetic and electric field gradients
- Still to do:
 - Finalize systematic investigations.
 - Final data set under ideal conditions.
 - Molecular beam clipping check.
- Expected sensitivity:
 - Better than 10⁻²⁹ e cm
 - 10 times better than the ACME II result

Blue: limited range of IPV (<10x)
Yellow: larger range of IPV (>10x)
* part of systematic error bar

Systematic category	Systematic check	Units
Lasers: Pointing and position	Probe: applied pointing	mrad
	Cleanup: applied pointing	mrad
	Cleanup: position	mm
Lasers: Detuning	Cleanup detuning*	MHz
	Delta P	MHz
	Ti Sapph detuning (both cleanup a	MHz
	Delta N*	MHz
Lasers: Power	Low probe power	unitless (fr
	X,Y beams power asymmetry	unitless (P
	I state power asymmetry	unitless (P
Lasers: Polarization	Cleanup ellipticity	S/I
	Probe ellipticity	S/I
	Probe polarization rotation	deg of lam
Electric Field	E_mag large	V/cm
	E_mag small	V/cm
	Floating field plates*	V
Magnetic Field: Offsets	Bz_nr*	mGauss
	Bx_rev	mGauss
	By_rev	mGauss
	Bx_nr*	mGauss
	By_nr*	mGauss
Magnetic Field: Gradients	dBx/dx_nr*	mGauss/c
	dBy/dy_nr*	mGauss/c
	dBy/dz_nr*	mGauss/c
	dBy/dx_nr*	mGauss/c
	dBz/dx_nr*	mGauss/c
	dBx/dx_rev	mGauss/c
	dBy/dx_rev	mGauss/c
	dBy/dy_rev	mGauss/c
	dBy/dz_rev	mGauss/c
	dBz/dx_rev	mGauss/c
	dBz/dz_rev	mGauss/c
DAQ parameters	Block switches settling times	fraction of
	Polarization switching frequency	kHz
	Waveplate dither angle	degrees of

Cris Panda

HIVA

INE IN

Elizabet

West

Ang

Adam Daniel Haeffner Zack West Lasner

TFI

1/5

Think science

5

SH Real

Cris Panda

Cole Meisenhelder

Zack Lasner

-

Daniel Ang

Jonathan Haeffner

Nick Hutzler CalTech

Xing

Wu

this

Experiment fits in a room, currently TeV, PeV possible

or this

or both?

