Quantum limits to force detection & quantum backaction evasion

Aashish Clerk, IME, U. Chicago

- Quantum limit on continuous position detection
 - AC, Marquardt, Girvin, Devoret and Schoelkopf, RMP 82, 1155 (2010)
- One & two-mode backaction evasion
 - Force detection with no quantum limits?

Generic force detection

- Issue: quantum limits on monitoring x(t)....
- Example: Fabry-Pérot cavity with a moveable end mirror....
 - Cavity resonance frequency depends on mirror position

Homodyne measurement

• Mechanical motion written on phase quadrature of output light

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
x(t)
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array}$$
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}
\left(t)
\end{array}
\left(t)
\end{array}
\left(t)
\end{array}
\left(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)

• Measure phase quadrature via homodyne interferometry

$$I \propto |a_{\rm out} + \beta|^2 - |\beta|^2$$

- Shot noise in *I*(*t*)...
 - Will take time to infer a change in phase
 - Will take time to infer mechanical position

- Measurement is weak
 - Not trying to measure instantaneous position x(t)!
- Instead, try to get information over time-scales >> 1 / $\omega_{\rm M}$
 - i.e. try to measure the slowly varying quadrature amplitudes
 - Goal: sensitivity near the zero-point level...
 - Problem: quadratures don't commute with one another....

$$\hat{x}(t) \propto \hat{X}(t) \cos \omega_{\mathsf{M}} t + \hat{Y}(t) \sin \omega_{\mathsf{M}} t \qquad \left[\hat{X}, \hat{Y} \right] = i$$

Added noise of the measurement

Quantum noise spectral densities

- First issue: how do we quantify the size of the noise?
 - Noise spectral density... size of noise at each ω

$$x(t) \qquad x[\omega] = \frac{1}{\sqrt{\tau}} \int_0^{\tau} dt e^{i\omega t} x(t) \\ \langle |x[\omega]|^2 \rangle \equiv S_{xx}[\omega] = \int dt e^{i\omega t} \langle x(t)x(0) \rangle$$

• How do we think about this quantum mechanically?

$$\bar{S}_{xx}[\omega] = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle \{\hat{x}(t), \hat{x}(0)\} \rangle$$

- Plays the role of a classical noise spectral density
- Analogous spectral densities characterize detector...
- QM: uncertainty-principle constraints on noise
 - these have no classical analogue

Fluctuation dissipation theorem

 $x(t) \qquad \bar{S}_{xx}[\omega] = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle \{\hat{x}(t), \hat{x}(0)\} \rangle$

- Size of position noise in thermal equilibrium?
 - Response of position to a force

$$x[\omega] = -\chi_{xx}[\omega] F[\omega] \qquad \qquad \chi_{xx}[\omega] = \frac{1}{m(\omega^2 - \omega_M^2) + im\gamma\omega}$$

• Fluctuation-dissipation theorem

$$\bar{S}_{xx,eq}[\omega,T] = \left(-\frac{\operatorname{Im} \chi_{xx}[\omega]}{\omega}\right) \left(\hbar\omega \coth\left(\frac{\hbar\omega}{2k_BT}\right)\right)$$

dissipation $\rightarrow 2k_BT$

Fluctuation dissipation theorem

 $x(t) \qquad \bar{S}_{xx}[\omega] = \frac{1}{2} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle \{\hat{x}(t), \hat{x}(0)\} \rangle$

- Size of position noise in thermal equilibrium?
 - Fluctuation-dissipation theorem

 $\bar{S}_{xx,\text{eq}}[\omega,T] = \left(-\frac{\text{Im }\chi_{xx}[\omega]}{\omega}\right) \left(\hbar\omega \coth\left(\frac{\hbar\omega}{2k_BT}\right)\right)$

• At zero temperature?

$$\bar{S}_{xx,eq}[\omega, T=0] = \hbar \left| \operatorname{Im} \chi_{xx}[\omega] \right|$$

• "Size" of zero-point fluctuations at a given frequency...

Towards the quantum limit

 $I(t) = \lambda x(t) + \delta I_0(t)$ = $\lambda [x_0(t) + \delta x_{add}(t)]$

How small can we make the added noise?

$$\delta x_{\rm add}(t) = \frac{\delta I_0(t)}{\lambda} + \delta x_{\rm BA}(t)$$

"Intrinsic" output noise (imprecision):

- Present even without coupling to oscillator (e.g. shot noise)
- Reduce by increasing coupling strength and/or laser power

$$\lambda = \frac{dI}{dx} \sim \frac{A\sqrt{\bar{n}}}{\kappa}$$

Towards the quantum limit

I(t) $I(t) = \lambda x(t) + \delta I_0(t)$ $= \lambda [x_0(t) + \delta x_{add}(t)]$

$$\delta x_{\rm add}(t) = \frac{\delta I_0(t)}{\lambda} + \delta x_{\rm BA}(t)$$

Back-action noise:

- Measuring x must disturb p
 - Leads to extra uncertainty in x at later times
 - Due to backaction force of detector (e.g. cavity photon number)
- Suppress by *decreasing* coupling strength / laser power...

Amplifier quantum limit

$$I(t) = \lambda x(t) + \delta I_0(t)$$

= $\lambda [x_0(t) + \delta x_{add}(t)]$

• How small can we make the added noise?

$$\delta x_{\rm add}(t) = \frac{\delta I_0(t)}{\lambda} + \delta x_{\rm BA}(t)$$

- Quantum Limit
 - If our detector has a "large gain", then $\delta x_{add}(t)$ cannot be arbitrarily small
 - The *smallest* it can be (at each frequency) is the size of the oscillator zero-point motion...

Precise statement of the QL

If there were no added noise: $\int_{II}^{I(t)} \frac{1}{1 + \omega} = \lambda^2 \bar{S}_{xx}[\omega]$ Including noise added by detector: $\bar{S}_{II}[\omega] = \lambda^2 \left[\bar{S}_{xx}[\omega] + \bar{S}_{xx,BA}[\omega] \right] + \bar{S}_{I_0I_0}[\omega]$

• Spectral density of the added noise

$$\bar{S}_{xx,\text{add}}[\omega] = \frac{\bar{S}_{I_0I_0}[\omega]}{\lambda^2} + \bar{S}_{xx,\text{BA}}[\omega]$$

Quantum limit

$$\bar{S}_{xx,add}[\omega] \ge \bar{S}_{xx,eq}[\omega, T \to 0]$$

Spectral density of zeropoint motion!

Precise statement of the QL

• Corresponding limit to force sensitivity?

$$x[\omega] = -\chi_{xx}[\omega] F[\omega] \quad \Longrightarrow \quad \bar{S}_{FF,\text{add}}[\omega] \ge m\gamma\hbar|\omega|$$

 This ADDS to the intrinsic force fluctuations from the mechanical bath...

$$\bar{S}_{FF,\text{th}}[\omega] = m\gamma\hbar\omega \left(1 + 2\bar{n}_{\text{th}}[\omega]\right)$$
$$\simeq 2m\gamma k_{\text{B}}T$$

Away from resonance? $\bar{S}_{xx}^{\text{total}}(\omega)$

full noise (including back-action)

imprecision noise

intrinsic (thermal &

quantum) noise

- $\omega \neq \omega_M$??
 - Achieving the true quantum limit requires correlated backaction and imprecision noises

 $\delta x_{\rm add} = \frac{\delta I_0}{\lambda} + \delta x_{\rm BA}$

 $(\boldsymbol{\nu})$

 $\bar{S}_{xx,add}[\omega] \ge \bar{S}_{xx,eq}[\omega, T \to 0]$

- Consider $\omega >> \omega_M$.
 - Quantum limit: $\bar{n}_{\rm th} \rightarrow \bar{n}_{\rm th} + 1/2$
 - No correlations: $\bar{n}_{\mathrm{th}}
 ightarrow \bar{n}_{\mathrm{th}} + (\omega/\gamma)$ ("SQL")
- "Standard quantum limit" ≠ "quantum limit"!
- Tricks for correlation:
 - variational readout, input squeezing, nonlinearity....

Quantum Backaction Evasion

- Can we "beat" the quantum limit?
 - Change the rules of the game so that backaction is irrelevant
 - e.g. measure just a single mechanical quadrature

$$\hat{x}(t) \propto \hat{X}(t) \cos \omega_{\mathsf{M}} t + \hat{Y}(t) \sin \omega_{\mathsf{M}} t \qquad \left[\hat{X}, \hat{Y} \right] = i$$

- Measure X(t) only, backaction goes into Y(t)....
- Lets you measure a single force quadrature....

$$F(t) = F_X(t)\cos\omega t + F_P(t)\sin\omega t$$

Double sideband scheme

 $\hat{x}(t) \propto \hat{X}(t) \cos \omega_{\mathsf{M}} t + \hat{Y}(t) \sin \omega_{\mathsf{M}} t$ $H_{\mathrm{int}} = A\hat{x} \cdot \hat{a}^{\dagger} \hat{a}$

- Measure just the "X" quadrature? (Braginsky et al, Science 80; Caves et al., RMP 80) •Hard: measure both x and p with time-dependent couplings $H_{\rm int} \propto \hat{X} \cdot \hat{F} \propto [\cos(\omega_{\rm M} t) \hat{x} - \sin(\omega_{\rm M} t) \hat{p}] \cdot \hat{F}$
 - •Easier: use a time-dependent coupling to position

$$A \to A(t) \propto \cos \omega_{\mathsf{M}} t$$
$$H_{\mathrm{int}} \propto \hat{F} \cdot \left[\hat{X}(t) \left(1 + \cos 2\omega_{\mathrm{M}} t \right) + \hat{Y}(t) \sin 2\omega_{\mathrm{M}} t \right]$$

• Can realize with a cavity if $\omega_M \gg \kappa$ (Quantum theory: AC, Marquardt and Jacobs, NJP 2007; Expts: Schwab, Teufel, Sillanpaa) $b_{in}(t) \propto e^{-i\omega_R t} \sin \omega_M t \longrightarrow \hat{F} \propto \hat{a}^{\dagger} \hat{a} \longrightarrow \hat{\omega}_M$

Can we do better?

 $F(t) = F_X(t) \cos \omega t + F_P(t) \sin \omega t$

- Can we measure *both* force quadratures with no quantum limit?
 - Impossible if we encode the force in a single mechanical resonator
- Possible if you use two mechanical modes! (Caves & Tsang, PRL 2010)
 - No fundamental limit on continuous force detection
- General idea: use **joint quadratures** of two mechanical modes

• Two quadratures store measurement, two hold backaction...

Can we do better?

 $F(t) = F_X(t) \cos \omega t + F_P(t) \sin \omega t$

- Can we measure both force quadratures with no quantum limit?
 - Impossible if we encode the force in a single mechanical resonator
- Possible if you use two mechanical modes! (Caves & Tsang, PRL 2010)
 - No fundamental limit on continuous force detection
- General idea: use **joint quadratures** of two mechanical modes

• Two quadratures store measurement, two hold backaction...

Implementation?

- Hard:
 - "Good" and "bad" quadratures need to be dynamically isolated
 - Read-out **only** the "good" collective quadratures...
- Nice trick (Hammerer et al, PRL 2009; Caves & Tsang PRX 2012; Koopmans 1931, ...):

- X₊,P₋ act dynamically like x,p of an oscillator, but they commute
- "Quantum mechanics free subsystem"
- Equivalent description
 - "negative mass oscillator"

$$H_M = \Omega(a^{\dagger}a - b^{\dagger}b)$$

Optomechanical implementation

• Modified two-tone driving scheme (Woolley and AC, PRA 2013)

- Drive cavity in-between the two mechanical sidebands...
- In rotating frame, get positive and negative frequencies!

$$\omega_b - \omega_a = 2\Omega$$
$$H = \Omega \left(X_+ X_- + P_- P_+ \right) + G \left(\hat{d} + \hat{d}^{\dagger} \right) \cdot X_+$$

 ω_1

- Experiment (optomechanics): Ockeloen-Koppi et al, PRL 2016 (Sillanpaa group)
 - Quantum backaction suppressed by ~3 dB

Atomic spin ensemble approach

• Use an atomic ensemble as the negative-frequency oscillator...

$$H_M = \Omega(a^{\dagger}a - b^{\dagger}b)$$

- Experiment: Moller et al, Nature 2017 (Polzik group)
 - Backaction suppressed by ~3 dB

Caveats

- Evade backaction, but suffer extra noise due to dissipation of second mode.... (Woolley and AC, PRA 2013)
- Can still beat "conventional" quantum limits:
 - On resonance: $\bar{n}_{add}[\omega_a] \rightarrow 0$ • Detuned from resonance: $\bar{n}_{add}[\omega_a + \Delta] = \frac{1}{2\sqrt{2}}$

Summary

- Quantum limit on continuous position detection
- Backaction evading techniques
 - Two-mode BAE → beat the conventional quantum limit
 - Other applications:
 - Preparation of non-classical states (PRA 2013, 2014, Science 2015)
 - Squeezing-enhanced dispersive measurement (PRL 2015)
- References:
 - AC, Marquardt, Girvin, Schoelkopf & Devoret, RMP 2010
 - AC, "Quantum measurement & quantum optomechanics", Les Houches 2015 Lecture notes (Oxford 2018?)