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Quantum Information Science

Information Processing
* Sensing

¢ Communication

* Computing

Quantum Physics
* Limited Readability

* Fragile Systems

* No-Cloning Theorem
* Inherent Randomness
* Nonlocal Correlations
* Inherent Parallelism

* Large State Space

transformative solutions in communication,
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Quantum Information Science

Science at the quantum scale for

computing, and sensing.
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Research Thrusts

Quantum Communication
Privacy assurance for data storage & distribution

Quantum Computing
Scalable algorithms for science, industry, &
security

Quantum-Enhanced Sensing
Better data with less time and energy
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Observation of coherent elastic neutrino-nucleus
scattering

D. Akimov'?, J. B. Albert, P. An*, C. Awe™’, P. S. Barbeau*”, B. Becker®, V. Belov', A. Brown*’, A. BolozdynyaZ, B. Cabrera-...

+ See all authors and affiliations

Science 15 Sep 2017:
Vol. 357, Issue 6356, pp. 1123-1126
DOI: 10.1126/science.aao0990

OAK RIDGE, Tenn., Aug. 3, 2017--After more
than a year of operation at the Department
of Energy's (DOE's) Oak Ridge National
Laboratory (ORNL), the COHERENT
experiment, using the world's smallest
neutrino detector, has found a big
fingerprint of the elusive, electrically neutral
particles that interact only weakly with

matter.

The research, performed at ORNL's

Spallation Neutron Source (SNS) and

published in the journal Science, provides
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Sensors in General

» Sensors can be defined as devices that detect physical quantities by
transducing them to (potentially macroscopic) understandable signals

* One way to construct a sensor:

/ Raw signal current \

signal
/ / 01101
/\/\/—a» transducer > 00101
Physical field Informati(?n amplification Signal analysis Comprehensible
K transduction / data

sensor

* |nsome sensors readout methods can be included in transducer or
front end

* Noise occurs in each component
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Sensors in Gen@

* Sensors can be de
transducing them¢

» tect physical quantities by
“ammopic) understandable signals
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sensor

* |nsome sensors readout methods can be included in transducer or
front end

* Noise occurs in each component
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Sensors in Gen@l

* Sensors can be de _ — 5 physical quantities by
transducing them SN & “aemopic) understandable signals
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* |nsome sensors readout methods can be included in transducer or
front end

* Noise occurs in each component
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Sensitivity Depends on Integration Time

Limit of detection
-
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Sensor size matters

Macro

o
Q

A\ Micro, nano
- @ /}, 4 é nanoscale processes require
b ,4,‘7 tiny sensors, often limited by

=4~§{)$

- quantum processes
238U

The fundamental detection limit in many systems is determined by

quantum mechanics (e.g., Heisenberg uncertainty principle) because a full
description of the sensor requires quantum theory
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We are done

(#3¥ President Obama
4?8 @roTUS

¥ Follow ]

Einstein was rightl Congrats to @NSF and @LIGO on detecting
gravitational waves - a huge breakthrough in how we
understand the universe.

6:43 PM - 11 Feb 2016
4« 139433 21272
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Why use squeezed light?

President Obama [ W Follow ]
@POTUS

You guys better use #squeezed light if you want to see further
out into the universe, or smaller GW signals, though.

6:43 PM - 11 Feb 2016

4« 139433 21,272
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Quantum Magnetometry

Spectrum analyzer
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4.5dB QNR below the shot
noise limit

Otterstrom, Lawrie, Pooser, Optics
Letters, 39, 6533 (2014)
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Ultra Sensitive Microcantilever Displacement Measurement

Noise floor reduced to less than 40% of the shot noise limit
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135 fm amplitude displacement modulation measured for 4dB
squeezing in 10 kHz acquisition window; 1.35 fm possible in 1 Hz
acquisition window. Record for AFM sensitivity

R. C. Pooser, B. Lawrie, Optica 2(5) 393-399 (2015)
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Plasmonic trace sensing with squeezed light
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Spectrum
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Rotation stage
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nature
hvsi
p ySlCS PUBLISHED ONLINE: 177 NOVEMBER 2014 | DOI: 10.1038/NPHYS3137

LETTERS

Hunting for topological dark matter with

atomIC CIOCkS “networks or correlated atomic clocks can be
used as a powerful tool to search for

A. Derevianko™ and M. Pospelov?® topological dark matter

ASTROPHYSICS

Atom-interferometry constraints on
dark energy

P. Hamilton,'* M. Jaffe,! P. Haslinger,' Q. Simmons,' H. Miiller,"%t J. Khoury®

SCIENCE 21 AUGUST 2015 « VOL 349 ISSUE 6250 849

Also see: proposals to squeeze microwave background field;

e.g. arXiv:1607.02529v2 [hep-ph]
*OAK RIDGE
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Quantum Sensing and Quantum Computing Across Quantum Networks

Quantum networks are collections of qubits (nodes)

connected by interactions, or quantum gates (edges)

Simplest quantum network is the two qubit EPR

state or Bell state, which is a workhorse in quantum

sensing

* The quantum correlations in EPR quantum

networks can be used to reduce the noise floor
in measurements — quantum metrology
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Indefinitely large quantum networks can be built by
concatenating EPR states — the same network is a
resource for measurement-based quantum
computing and distributed quantum sensors
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The know-how in generating long range entanglement for guantum sensing lends itself to
building quantum computers. This is because in order to make these quantum sensors, one

must build a quantum network with a two qubit gate interaction between the nodes.




Pavel Lougovski: A Quantum Interconnect for Matter Qubits Based on Frequency-
Encoded Photonic Qubits

Develop atechnology enabling exchange of quantum information
between dissimilar matter qubits

Develop a protocol to mediate operations between remote qubits using single photons
of different frequencies

Experimentally demonstrate high-fidelity quantum operations on photons of dissimilar
frequencies

Utilize the technology as a part of the future material qubit testbed and quantum

internet
quantum
interconnect
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Long range continuous variable plasmonic networks

Long range entanglement among plasmons in separate
substrates

$0.8 GHz

M. Holtfrerich, M. Dowran, R. Davidson, B. Lawrie, R. C. Pooser, A. Marino, Optica 3, 985-
988 (2016).
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Photonic to microwave transduction

« Complete coherent electronic transduction of quantum
entanglement leads to coherent coupling to microwaves

— In continuous variable quantum optics the quantum statistics are
already encoded in the microwave sidebands of the optical field!

» Could lead to entangled networks of superconducting
cavities
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Light is incident on metal surface
Surface plasmons
/ Nanohole array

Metal film

Top and bottom

Surface plasmons
Couple and reemit light %OAK RIDGE
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Quantum Sensing Networks

Integration of magneto optical traps (MOT) with a squeezed light source

« Current MOT optical readout limited by laser noise
— Squeezed light source can enhance sensitivity of existing MOTs

- Entanglement exists between probe and conjugate beams
— Quantum state transfer from probe beam - MOT
— Teleport state from conjugate beam to a 2" MOT
— MOTs are now entangled - backbone of scalable quantum sensing network

spec. analyzer
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