Readout for CMB Detection

Zeeshan Ahmed
SLAC National Accelerator Laboratory

December 13,2017

Workshop on Quantum Sensing for High Energy Physics

Argonne National Laboratory



Outline

* Motivation

* Readout of CMB quantum sensors: basics and taxonomy

* Traditional readout techniques for TES bolometers

* DC-SQUID serial switching (Time Divison)

* In-series LC resonators (Frequency Division)

* Cold: Next-gen Microwave resonator techniques

* MKIDs

* Microwave resonators for TES readout using RF-SQUIDs

* Challenges and opportunities

* Warm: Readout electronics for microwave resonators
e FPGA+ADC/DAC for multi-channel software-defined radio

e SLAC Microresonator RF Electronics

* Challenges and opportunities
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CMB-54

* 500,000 sensors
* 8 optical bands from 30-300 GHz

* Multiple cameras for inflation, dark relics, neutrino mass, dark energy,
cosmological parameters

* 2.5 meter Diameter Focal Plane
with 100,000+ detectors

High-resolution Science + de-lensing: Low-resolution B-mode Science:
300,000 sensors 200,000 sensors
on 3-4 large telescopes on ~12 small telescopes
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CMB Readout basics (1)

* TES bolometers with SQUID amplifiers have provided sufficiently low
noise and sensitivity for CMB cameras in the past decade

* SQUID has periodic response, so needs to be linearized.

* Thus end up with many wires to read out one TES bolometer

RTBIAS

RTES
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RsH RFB1 5
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CMB Readout basics (ll)

* Share sensor bias and signal wiring across many sensors of the
Instrument.

* TES & other quantum sensors are operated at subkelvin temperatures. So need to
minimize heat load from room temperature

* Reduce system complexity and reduce integration burden

* Signals are multiplexed at or close to the temperature stage that
houses the sensors.

* MUX factor = number of sensor signals carried per unit set of
wires to room temperature

SQUID muItipIexer

BICEP3 camera AdvACT sensors
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CMB readout multiplexers

* RF time division and frequency division MUX are common in CMB
cameras today

MUX basis/
Frequency regime

Time-division

Frequency-division
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~RF
O(1-100) MHz

1. DC-SQUIDs
used as switches to

cycle through
TESes (aka TDM)

1. LC resonators in
series with TESes
(aka dfMUX)

2. MKIDs

~Microwave
O(300MHz)+

1. LC resonators
inductively coupled

to TESes (aka
microwave MUX)

2. MKIDs
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DC-SQUID serial switching of TES bolos
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* TES bolo connected to inputs.

Inputs amplified by SQUIDs
* MUX Factor = 64

* 64 bolos per “column”.

* Switch between “rows” serially.

e All columns read out at once,
but only one row at a time.

* Active feedback linearizes
SQUID response

Rev. Sci. Instrum. 74, 3807 (2003)

SQUID multiplexer chip
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LC resonators in series with TES bolos
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* TES bolos are dissipative elements in ~MHz resonators at unique
frequencies in parallel

* MUX factor = 64
* Bolos on one frequency comb, amplified by single SQUID.

* Active feedback linearizes SQUID response

Rev. Sci. Instrum. 83,073113 (2012)
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Superconducting Microresonators

* O(0.1-10) GHz superconducting resonators
* Pack 100s-1000s in reasonable bandwidth

* Signals can be captured in phase and/or amplitude modulation
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Annu. Rev. Condens. Matter Phys. 2012. 3:169-214
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MKID multiplexing

polarization 1
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polarization 2

e Resonator inductor is sensor for
photons or coupled optical power

* Cold amplification by LNA at ~few K
. MUX factor: ~1000
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each detector
has unique
capacitance
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Microwave resonators to multiplex TES bolos (1)

feedline HEMT

T g b
~/ \ 1/ Y

(|

resonators

X %
rf-SQUID X % A %

to TES
* Use microwave resonators to multiplex TES

* TES inductively couples to RF-SQUID, which screens a GHz
resonator

* Signal in TES changes inductance, hence frequency of resonance. No
change in Q
Irwin & Lehnert, Appl. Phys. Lett. 85,2107 (2004
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Microwave resonators to multiplex TES bolos (2)

feedline HEMT
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* Also enables bypassing of TLS noise in Time (4s)

resonator capacitor
* MUX factor: ~1000

B. Mates dissertation (201 1)
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Noise performance of microwave-multiplexed TES bolos
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Dober et al, arXiv:1710.04326 (2017)
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Challenges & opportunities for next-gen cold readout

* Can go to extremely large MUX factors and cryogenic arrays with
superconducting microresonators
* Resonator fabrication
* Frequency placement
* Quality factors/bandwidths or df/f
* Materials, geometry
* For MKIDs, suitable band gaps for optical bands of interest

* Resonator noise (TLS, g-r etc.)
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Warm readout electronics for microwave resonators

Downmix

I/ —> Filter > ADC
Reference
Clock
R

7y Oscillator l
Resonators
- Filter DAC

Upmix

FPGA

Cryostat Warm readout

* Warm (300 K) digital electronics synthesize input microwave tones to
drive the resonators and channelize and demodulate the output
microwave tones

 ADC, DAGCs, FPGAs

* ADCs, DACs not sufficiently high bandwidth today

* Operate in baseband (DC-MHz/GHz) and up-/downmix for signal band
* Optionally use 1Q scheme

* Industry-driven fast-paced growth in FPGA/ADC/DAC capability
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ROACH-2 + 500 MHz ADC/DACs

Low-Pass
Filters
Digital 45K 35K 100 mK
1 Attenuator SS SS CuNi
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SMA block block attenuator
1 feed- ¢ ¢
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ROACH-2 block attenuator
Board r|_|-|,| *
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1 300K
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Filters




SRON system (2 GHz bandwidth)
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arXiv: 1507.04151
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Fermilab: ROACH-2 + 4 GHz bandwidth

10 K pixels crate

To MKID

Up conversion,
amplification,
attenuation and
filtering

from MKID

Down conversion,
amplification,
attenuation and
filtering

Fe
ele

To MKI DS N
—F B -1 | To/from ROACH2
from MKID « &8 . .
B s, MKIDs for optical require a detector
N R with a BW of ~250 KHz.
Fleg— CMB ~100Hz. (More channels per
S m - ADC and more resolution).

Gustavo Cancelo, CPAD 2017 slides
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SLAC Microresonator RF Electronics (4 GHz bandwidth)

Special application of SLAC’s RCE “common platform”
used in particle and neutrino physics, and in cosmology

- '.3._’~

|: Carrier Card (Xilinx KU060, 2.7K slices)

2: Crate (ATCA, |-14 slot available)

3: RTM

Each carrier supports 2 AMC application cards

Carrier card: FPGA, memory, backplane connections
AMC cards: (double-wide full height) ADCs, DACs, high performance front end electronics

RTM: General purpose IO, extra networks, miscellaneous
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SLAC Microresonator RF Electronics (4 GHz bandwidth)

FPGA Y Y
Channelize, DDC,_feedba_ck, DDS DAC DAC
W Bl e had 20 bit 1Ms/s or 32 X 18 bit
groindncanon 16 bit 50Ms/s slow
ADC DAC
2.5Gs/s, 14 bit 2.5Gs/s, 16 bit
DDC - 500MHz Complex data
Complex data DDS - 500MHz
% % v v
X LO X AC coupling V\rlgsrgt(t))lrasls
Multiplexer Multiplexer
4-6 or 6-8GHz 4 X 500MHz -
4 X 500MHz 4-6 or 6-8 GHz
* T Cryo l + Flux TES
1:2 Splitter |- System <& 1:2 Splitter ¥ Ve Yiblas

Zeeshan Ahmed
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Digital 1Q vs.Analog 1Q

— X —»1| ADC
\ 1

' Band Selection - Digital I/
Analog |/Q scheme used for —i S 90°le— LO gl -
many S)’Stems """"""" r A T
_»| X —i| ADC
1/Q mixer
-------- Complex data
' ' in FPGA

Band Selection Digital DDC
o , N . | X >/ ADC >

Digital 1/Q scheme used in L | Campe
SMuRF i Digital 1/Q ADC FPGA

* For a single band, analog I/Q provides more efficient use of ADC.

* Continuous calibration of I/Q mixer require to reject out of band signals

* For multiple bands, channel splitting filters eliminate ADC efficiency
advantage.

* Single 4GHz band beyond current ADC / DAC state of the art

* Digital 1/Q chosen for SLAC electronics to eliminate calibration
complexity
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Noise and dynamic range

* LNA (HEMT) noise, 2-4K, ultimate limit
* For large MUX systems, dynamic range is the problem

* Limited by linearity, intermodulation products can mimic broadband noise!

= sin(wyt + @), = sin(wyt + @)
C3A2 + C4B +‘+ CsA?B + C7AB +-
W1, W 2W1, 2W2 W1 -|- Wy, 2Wq — W2, 2Wy — Wy, other f
Original tones Out of band —w, In band!
Out of band
Signal band
2N ~N3 3rd order terms!
= 20003 is a big number!
— Looks like broadband noise
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DAC and Upmix system

Generating 1000 lines in 2GHz bandwidth from 4-6GHz
* Gaussian random frequency errors added
* Note: Gaps are put in spectrum for noise testing.

This is after the last active device and filter in the system. Combining with 6-8
GHz is not expected to add spectral distortion or non-linearity

Final system will add equalizers to level overall spectrum

Signals to Cryo
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o o o o
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-100
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Signal generation noise in detection band

e Measurement shows >100dBc/Hz
* LO noise, nonlinearity etc. all included

* Measurement done with 2000 lines generated (not equally spaced,
obviously!)

* Tests with real SC resonators now in progress!

= Agilent 16:49:01 Dec 12, 2017

a Mkrl 1.350 MHz
Ref —30 dBm #Atten @ dB Noise -104.648 dB/Hz
Avg

Noise -104.648 dB/Hz

Center 5.764 957 GHz Span 5 MHz
#Res BH 30 kHz VBW 30 kHz Sweep 21.2 ms (601 pts)

-104dBc/Hz noise between lines
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Full Loopback test: DAC + upmix + downmix + ADC

* Single 500MHz block, 5.5-6GHz shown.
* 2000 lines being generated and received

* Gap is used for noise calibration

* Full SMuRF system, everything except the cryogenic system

Loopback DAC to ADC through Up/Down Converters - 5-5.5 GHz Band
I T 1 1 I T 1

dBFS

-1
-250 -200 -150 -100 -50 0 50 100 150 200 250
frequency MHz
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Maximizing Dynamic Range — HEMT, tone tracking

* HEMT is normally the limit to system dynamic range
* Replace HEMT with low gain modification and add 50K amplifier stage

* Dynamically track resonance dips to reduce power in HEMT an
additional ~10-15dB without degrading signal to noise

* Line tracking reduces dynamic range requirement in ADCs (but not DAC:s).

Tone tracking demo with SLAC electronics

_4o__ Tone Tracking Power Reduction +5.0955¢3TONne Tracking Off [dBinl/;'g]o
— Tone Tracking Off E 8%3
821 _ . Tone Tracking Off (Flux Average)| ] s 016
— — Tone Tracking On — 8%3
& : > Y 4-132.5
m O 0.10
T C  0.08
3
= U 0.06
| -
0, S 0.5 1.0 1.5 2.0
= = +5.0955¢3TONe Tracking On 1-135.0
o . 0.20
— O 0.18
2 1S 8.16 E
14
= § 012 —-137.5
0.10
. | , L o008
_98 i i i 0.06
0.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 _140.0
Flux Bias [®] Flux Bias [®]

Kernasovskiy et al. LTD-17, submitted
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Challenges & opportunities for next-gen warm readout

* FPGAs,ADCs, DACs will become more and more capable

* RFSoCs (RF System on Chip) will combine these components

* Fully digital systems without analog mixing around the corner!
* ADC/DAC bandwidth increasing

* Component costs are dropping

* Linearity is a challenge for large MUX factors for CMB-54
* LNA linearity improvements might be possible if trade off with noise

* Tone tracking, feed forward, chirped readout etc.

& High Gain HEMT, 5.5 GHz band

% :
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Conclusions

* Traditional cold & warm readout has served 2 generations of CMB
cameras, but no more!

* Microwave resonators will enable larger camera sensor counts
* TES, MKIDs are starting to take advantage
* MUX ~1000 being achieved, several 1000 around the corner

* Warm readout

 ADC, DAC and FPGA technology advancing quickly to take advantage of
superconducting resonators

* CMB-54 and next-generation CMB experiments will take advantage of
this progress in cold and warm readout technology for quantum
SEeNsors.
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SLAC Microresonator RF Electronics (4 GHz)

* Frequency of probe tones is actively
adjusted to track resonance.

* Enables packing more resonances in a given
RF power budget.

* Direct digital synthesis and demod (no |Q)

* Being built for LCLS-Il based on existing
ATCA heritage at SLAC for particle physics
and RF engineering in LCLS-I.

. . Carrier cards
* A carrier card provides F“

* 4GHz bandwidth
* Upto 4000 channels

Lo = &

* Full hardware prototype now being tested . -

* Plans to make this general purpose and
serve TES/MKID applications
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Linearity:

If the system bandwidth includes
an octave or more bandwidth,
2nd order non-linear products are
important (f1-f2) is in-band.
Otherwise the first important
nonlinear terms are 3rd order
(f1+f2-f3) which are typically
smaller.

e This can still work but requires
careful design.

Signal levels need to trade off

noise vs nonlinearity throughout

the design

* Generally implies low gain
amplifier stages

e SMuRF uses a low gain HEMT
and 50K amplifier

SMuRF design avoids octave
bandwidths.

"

With evenly spaced lines the intermodulation
products are “hidden” underneath the main
lines, invisible but still there

With randomly spaced lines, the intermodulation
products look like broadband noise

LLCCLCL L O LT

Linearity needs to be tested with random line spacing
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Cold MUX tests: Flux Ramp Tracking Demonstration

« All lines operational, single line frequency vs time shown.

=19
=122 h
~1.24 |
-1.26 |
~1.28 |

=137

=132

-1.34

Performance good for SKHz flux ramp
For faster flux ramp will need feed-forward

Electronics and algorithm latency limit bandwidth
Already in development for TMHz X-ray sensor
For CMB, physics signal is small (icy blackness of space)

Flux ramp very reproducible -> feed forward should work easily!

Line at 5248.7 MHz
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Full loopback test: noise measurement

* Noise measurements on all 4 blocks.

* Receive requirements 85dBc/Hz, | 5dB below transmit requirements
due to line tracking

Caa for Band 1 Avg Noise = -133.6101 Daa for Band 2 Avg Noise = -132.8672
T T T T
Voot Yazgers Yazoers ¥3: 417 : .
Yase232 Yocrozo Yoo 7scs Vac.5721
40 40 -
igra To Nhee - NATIL I own canuarfADC. = 100 1634 igral To Nnke - NATIL IDown enmertfADC = 67 (44
€0 ise Meacured from “BMHz €0 ise Meacured from M|
80 80 [F
b ALl U
\ i

w‘um M,mi,‘li u ]1[,9 ‘ BN O
( LA I i Al WD LA 0 L APRIO 8 i i IE
.., It 14 A R O R A il
| :HIHS;: ; (] \ i (T

-'20

* Noise measured in TMHz
band around “missing line’
* Full 2GHz bandwidth

)

il L i
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1
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Results: Improved HEMT linearity

 HEMT has low noise noise (-194dBc/Hz) but poor linearity: -44.1dBm input IP3

 Low Gain HEMT: HEMT IP3 is limited by the output stage, so by removing
one stage (out of 3 total) and get 13dB less gain, 13dB higher input IP3 and
the same noise. -29.5dBm input IP3

* Line tracking reduces signal by ~15dB due to resonance dips
* For 2000, -70dBm input lines, reduced to -85dBm by line tracking:

*  Original HEMT: 83dBc/Hz (want total system >85dBc/Hz on receiver)
* Low gain HEMT: | | 3dBc/Hz — no longer limiting!

High Gain HEMT, 5.5 GHz band

Low Gain HEMT + Follow-On, 5.5 GHz band
60 80 1 T 1 T 1 T 1
‘ / :
7Ty || e P]umt.un.'.!u.'”;.l-.QOIR:..'{"/]0.~2Q3 AP AT L Spme ,(. o5 s e 60 -
: Prdinentat = 1.008 Pic: + 39.003
) W LI Lo S R - N S SRR 0L g
= - i P = 3.147 P, + 102.254
g al g 20 1w :
[a4] j4n]
= Aot
- e OF-
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5 3
v = a0
2 2
B -4 5
o S -40
,60 L
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-80 -80
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High Gain, IIP3 = -44.1dBm Low Gain, |[IP3 = -29.5dBm
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