

Neutron EDM

Peter Fierlinger

ANL Workshop Dec 14th 2017

- Neutron EDM Status
- PanEDM experiment
- Future perspectives & spin-offs

Neutron EDM and the SM

EDM Landscape

ТЛП

e and μ EDM

e-N coupling C_T,

couplings C_{S⁰}

g_π^{0,1,(2)}

Nuclear-spin-dependent

Nuclear-spin independent

Meson-nucleon couplings

Intrinsic quark EDMs

and chromo EDMs

Different systems and effective parameters

- Paramagnetic atoms

$$d_{para} = \eta_{d_e} d_e + k_{C_S} \bar{C}_S$$

- Polar molecules

$$\Delta \omega_{para}^{PT} = \frac{-d_e E_{eff}}{\hbar} + k_{C_S}^{\omega} \bar{C}_S$$

- Diamagnetic atoms

$$d_{dia} = \kappa_S S(\bar{g}_{\pi}^{0,1}) + k_{C_T} C_T + \dots$$

- Nucleons

$$d_{n,p} = d_{n,p}^{lr}(\bar{g}_{\pi}^{0,1}) + d_{n,p}^{sr}(\tilde{d}_{u,d}, d_{u,d})$$

- Fundamental fermions

 $d_e, d_\mu, (d_ au)$

...Higher orders (199-Hg!) :

$$d_{A} = (k_{T}C_{T} + k_{S}C_{S}) + \eta_{e}d_{e} + \kappa_{S}S + h.o.$$
(MQM)

T. Chupp, PF, M.J. Ramsey-Musolf, J. Singh, arxiv (2017) & Rev. Mod. Phys.

Limits from different measurements

Measured limits (note: 'sole-source' analysis)

System	Result	95% u.l.						
Paramagnetic systems								
Xe^m								
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24} \text{ e-cm}$	1.4×10^{-23}						
	$d_e = (-1.5 \pm 5.6) \times 10^{-26} \text{ e-cm}$	1.2×10^{-25}						
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$ e-cm	1.1×10^{-24}						
	$d_e = (-6.9 \pm 7.4) \times 10^{-28} \text{ e-cm}$	1.9×10^{-27}						
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28} \text{ e-cm}$	1.2×10^{-27}						
ThO	$\omega^{\mathcal{N}E} = 2.6 \pm 5.8 \text{ mrad/s}$							
	$d_e = (-2.1 \pm 4.5) \times 10^{-29} \text{ e-cm}$	9.7×10^{-29}						
	$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	6.4×10^{-9}						
	Diamagnetic systems							
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30} \text{ e-cm}$	7.4×10^{-30}						
¹²⁹ Xe	$d_A = (0.7 \pm 3) \times 10^{-27} \text{ e-cm}$	6.6×10^{-27}						
225 Ra	$d_A = (-0.5 \pm 2.5) \times 10^{-22}$ e-cm	5.0×10^{-22}						
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23} \text{ e-cm}$	6.5×10^{-23}						
n	$d_n = (-0.21 \pm 1.82) \times 10^{-26}$ e-cm	3.6×10^{-26}						
Particle systems								
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19} \text{ e-cm}$	1.8×10^{-19}						
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$ e-cm	7.9×10^{-17}						

Parameters are not independent: e.g. d_e as function of C_S

More measurements needed with different systems...

ТШ

Ramsey's method

(Particle beam or trapped particles)

T ~ mK, E_{kin} < 200 **NANO**-eV, v < 7 m/s, λ > 50 nm

Ultra-cold neutrons (UCN)

Strong Interaction: ,Fermi potential'

 $U_F \propto N \cdot b_c \sim 100 \text{ neV}$

Optical properties:

- Neutron traps (UCN: $v_{tot} < v_{crit}$)
- Neutron guides (CN: $v_{L} < v_{crit}$)

Electromagnetism

Magnetic moment: lµl = 60 neV/T ... magnetic traps

Gravity

 $V = m_{\rm n}gh$ 100 neV/m

Neutron production

Neutron source at Institute Laue-Langevin (Grenoble):

Neutron EDM: RAL-Sussex-ILL Experiment

Four-layer µ-metal shield High voltage lead (Still) the state of the art: Quartz insulating Magnetic field ~ 1 trapped cylinder coil ultra-cold neutron/ cm³ Storage cell Upper electrode Hg u.v. lamp PMT for Hg light Vacuum wall Mercury prepolarizing cell RF coil to flip spins Hg u.v. lamp Magnet S Ν UCN guide changeover UCN polarizing foil Ultracold ~ 0.5 m neutrons (UCN) Approx scale 1 m UCN detector -

Spin-clock with two species

- Neutrons +¹⁹⁹Hg vapor measured simultaneously
- UCN center of mass is affected by gravity (CMS 2 mm below center of chamber)
- Obvious: $R = \left| \frac{\gamma_n}{\gamma_{\text{Hg}}} \right| \left(1 + \frac{(\partial B/\partial z)h}{B} \right)$
- Non-trivial: $T_2(z)$, $\Delta \omega(z)$

Cohabitating spin

magnetometer

Best limit: $d_n < 3 \times 10^{-26} \text{ e cm} (\Delta \text{E} \sim 10^{-22} \text{ eV})$

Е

Systematics: Understood problems

Most critical: Ramsey-Bloch-Siegert shift or ,geometric phase' (GP):

$$\Delta \omega = \frac{\omega_{xy}^2}{2(\omega_0 - \omega_r)}$$

$$\omega_{xy}^2 = \left(\frac{\partial B_{0z}}{\partial z}\alpha\right)^2 + \left(\frac{E \times v}{c^2}\right)^2 + 2\frac{\partial B_{0z}}{\partial z}\alpha \cdot \frac{E \times v}{c^2}$$

Magnetic field requirements for 10⁻²⁸ ecm – level accuracy:

- ~< 0.3 nT/m gradient $d_f \sim 4.10^{-27} \text{ ecm } (^{199}\text{Hg GP})$ $d_f \sim 1-2.10^{-28} \text{ ecm } (\text{UCN GP})$
- Max. 1 dipole with 5 pT in 2 cm distance
- < 10 fT drift stability
- Spin-echo for various systematics

Pendlebury et al., Phys. Rev. A **70**, 032102 (2004) Further: P. G. Harris et al., Phys. Rev. A **73**, 014101 (2006), also: G. Pignol, arXiv:1201.0699 (2012), A. Steyerl et al. Phys. Rev. A **89**, 052129 (2014) etc...

Systematics: The next generation...

- Non-Gaussian spin distributions: nonergodic
- Affects all previously known systematics: Error bars, skewness
- Largest for non-thermalizing ensembles

Gaussian,

 $E_0 = 1 \frac{MV}{m},$

Normalized precession angle ϕ_N

-2

 $\partial B/\partial z = 1 \frac{nT}{cm}, q = 1.3$

q = 1.0

q = 1.6

- Impact on other measurements ?!

Non-gaussianity build-up with time:

Simulated counts

 10^{4}

103

10²

101

Neutron EDM projects

	RAL SUSSEX ILL (Grenoble, FR)	PSI (Villigen, CH) le,		TUM ILL (Grenoble, Munich)		LANCSE EDM (Los Alamos, US)	SNS EDM (Oakridge, US)	PNPI ILL (Grenoble, FR ⇒ Gatchina, RU)		TRIUMF (Vancouver, CA)	
temperature	RT	RT		RT	0.7 K	RT	0.7 K	RT		RT	
comag	Hg	Hg		none		Hg	³ He	none		Xe+Hg	
source	reactor, turbine	spall., s	D ₂	reactor, neutron	cold s, ⁴ He	D2	spall, internal ⁴ He	reactor, turbine, ⁴ He		spall., ⁴ He	
nr of cells	1	1	2	2		1	2	2	>2	1	2
[UCN/cc]	2	3	5	10	1000	~ 50	125	4	104	700	
goal [e·cm]	3·10 ⁻²⁶	1.10-26	1.10-27	$2 \cdot 10^{-27}$	< 10 ⁻²⁷	few 10 ⁻²⁷	2.10-28	5.10-26	5.10-28		1.10-27
date	2006	2017	2019	2019	2021+	2018	2021	2015	2022	2017	2019
status	done!	RAL exp. NEW LIMIT SOON ~1.10 ⁻²⁶	new	SETUP AT ILL STARTED: ,PanEDM'		Sucessful source upgrade	Critical Component Demonstration			FIRST UCN OBSERVED from Prototype source (2017)	
comment	Best limit so far!	Source de behind expectati	elivery ions	Modifica Munich = $D_2 \Rightarrow He$	tions for ⇒ ILL,	Will be faster than expected	great concept, higher risk				

P. Fierlinger – ANL Dec 14th 2017 Taken from R. Picker (2016), adapted

,Conversion' instead of moderation

Detailed balance: upscattering = exp(- $\Delta E/kT$) x downscattering

Planned ~ 1000 UCN / cm³

- Sites: (sD2) LANL, PSI, FRM2, NCSU; (IHe-II) ILL, PNPI, TRIUMF, KEK; SNS

SNS EDM

- Cryogenic, 100 UCN/cm³ site: SNS, placed at cold beam
- UCN source = EDM chamber, double chamber
- E = 75 kV/cm
- Co-magnetometer: spin dependent
 ³He absorption and scintillation

Unique possibility: spin dressing

- Modulation of spin-dressing frequency to extract EDM

- Year 4/4 of critical component demostration phase

LANL EDM

Recent progress: UCN source upgrade

First UCN at TRIUMF

- Very recent progress: First operation of source, 500000 UCN
- Behaviour within expectations
- p-Accelerator
- Neutron-production target with a 1 microamp, 480 MeV proton beam for 60 seconds
- Goal: $\sigma_d \sim 10^{-27}$ ecm, room-temp. Ramsey

TRIUMF, <u>CFI</u>, <u>BCKDF</u>, MRF and <u>NSERC</u> in Canada, and <u>KEK</u> and <u>RCNP</u>

- Contributions from Berkeley, ILL, Jülich, LANL, U.Michigan, MSU, NCSU, PNPI, PTB, RAL, TUM, UIUC, Yale
- Spin-precession with coherent pulsing
- UCN at room temperature, later cryogenic

PanEDM

- Double chamber
- Minimized number of mechanical parts close to chambers
- Initially¹⁹⁹Hg and Cs, if needed also ¹²⁹Xe, ³He, SQUID magnetometers

Nonmagnetic vacuum chamber (2013!)

TIM Small magnetic fields

- Highest damping ever obtained: ~ 6.10⁶ (mHz)
- Highest stability ever obtained: few 5 fT in 10² s (AIP Highlight 5/2015)
- Static gradient ~ 10⁻¹⁰ T/m over 1 m³

I.Altarev et al., arXiv:1501.07408 / Rev. Sci. Instr (2915) I. Altarev et al., arXiv:1501.07861, J. Appl. Phys. (2015), Appl. Phys. Lett. (2015)

μT Ramsey field coils

1.5 m

		- 12/2	Photo C			
	Field hom	ogeneity	maps [pT]			
0.4 m						
	0.4 m					
		Bx in pT	-			
	Xend-18	Xmitte0	Xend+18			
	8	50	88			
- 1	11	59	80			
ε	29	80	85			
. – –	18	48	91			
	19	51	91			
	12	43	97			
- N	-2	30	91			
		By in pT				
	Xend-18	Xmitte0	Xend+18			
	-23	-22	-26			
	-35	-39	-32			
	-28	-26	-22			
	-18	-28	-22			
	-28	-31	-23			
	-56	-26	4			
	-79	-33	15			
		Bz in pT				
	Xend-18	Xmitte0	Xend+18			
	-106	-66	-67			
	-116	-82	-63			
	-87	-53	-54			
	-81	-31	-27			
	-77	-34	-42			
	-87	-47	-66			
	-93	-55	-75			

(Measurement dominated by sensor cables!)

P. Fierlinger – ANL Dec 14th 20

III Spin-off: Designing small fields

- Time-dependent numerical modeling of hysteresis and magnetic equilibration (TUM, HIT) demonstrated: quantitative agreement of simulation + experiment
- IBI < 25 pT over large volume demonstrated
- New: demonstrated now in 10 m long shield for atomic fountain!

Gradient drifts

- Double chamber: first order field drifts canceled (limited by B_0) correction coils)
- Background gradient drift is small enough: SF ~ 6x10⁶ at 1 mHz ...

Allan std. dev. of gradient drift,

... Better use no comagnetometer and only very few components

100 fT/m / 10 (properties of additional shielding); 0.1 m cell distance... < 1 fT drift between cells

B₀ field – a key for systematics

Main issue: shielding properties are never uniform!

Simulation: permeability varied (strongly) along cylinder used for NMR B0 field coil:

(View into cylinder from front)

Any field inside will talk to the shield, almost impossible to avoid.

Measured: rel. field homogeneity in horiz. plane $\times 10^{-4}$ 0.2-3.6 -2.9-2.5-2.3-2.2 0.1 +-1.8 -0.4 -0.5 -0.8 -0.8 / m $\frac{\Delta B}{B}$ 0.0 +-0.3 -0.2 -1.0 -1.4 -3-0.1 --2.5-1.5 -2.2 -1.2 -1.4 -0.2 --4.4 -4.1 -3.9 -4.1 -4.6 -0.2 -0.10.0 0.10.2x / m Only 4 correction coils

- Limited by sensor alignment

ЛЛ Cs, SQUID, ¹²⁹Xe, ³He, ¹⁹⁹Hg...

Illustration: simultaneous precession of ¹²⁹Xe and ³He amplitude in cylindrical cell with 5 kV/cm applied

0.15

3000

3500

0.2

4000

Issues: Precision **Accuracy Directionality Stability Bandwidth Crosstalk**

Progress without a stronger UCN source?

- T ... Spin coherence & UCN storage time
- E ... Electric field strength
- $\alpha \dots V$ isibility
- N ... Number of UCN at end of measurement
- M ... Number of repetitions

Some new achievements:

- Visibility: α x 1.25 T. Zechlau, PD thesis
- ... in total a factor 5 might be possible without better source!

PanEDM at ILL

- No UCN at the EDM beam position at FRM2 for several more years
- PanEDM won competition for UCN beamline at ILL ('SuperSUN')
 - Superfluid helium source
 - Placed at a cold beam
 - Very 'soft' spectrum: < 74 neV
 - => T = 250 s demonstrated!
 - Very small systematics (no geom. Phase!)

Precursor source: SUN2

Reassembly ongoing at ILL (Dec 2017)

TIP Physics reach with super-SUN

Recently

reduced to "1"

	SuperSun stage I		SuperSun stage II	
UCN density	333	1/cm3	1670	1/cm3
Diluted density	80	1/cm3	400,8	1/cm3
Transfer loss factor	3	*	1,5	
Source saturation loss factor	2		2	
Polarization loss factor	2		1	
Density in cells	6,7	1/cm3	133,6	1/cm3
2 EDM chamber volume	33,2	1	33,2	1
Neutrons per chamber	110556		2217760	
EDM sensitivity				
E	2,00E+04	V/cm	2,00E+04	V/cm
alpha	0,85		0,85	
т	250	S	250	S
N after time T (1/e)	39800		794000	
Number of EDM cells	2		2	
Sensitivity (1 Sigma, 1 cell)	3,9E-25	ecm	8,7E-26	ecm
Sensitivity (1 Sigma, 2 cells)	2,7E-25	ecm	6,1E-26	ecm
Preparation time	150	s	150	s
Measurements per day	216		216	
Sensitivity (1 Sigma, 2 cells) per day	1,9E-26	ecm	4,2E-27	ecm
Sensitivity 100 days	1,9E-27	ecm	4,2E-28	ecm
Limit 90% 100 days	3,00E-27	ecm	7,00E-28	ecm

2018-2020 2019-2022

 $\sigma_{d_{\rm n}} = \frac{{\rm h}}{2\alpha ET\sqrt{N}}$

Compared to current limit: 3.10⁻²⁶ ecm

Future of nEDM?

The currently most promising option (in my opinion...):

- Cold beam produces UCN inside EDM cells in superfluid helium
- Cryogenic = low losses, large HV
- In situ = high density
- Control of systematic: many cells simultaneously
- Magnetic field quality demonstrated
- UCN source design with 3 m length demonstrated

Towards a fully cryogenic measurement

- Only one component to be developed & multiplied:
 - SQUIDs/TES?
 - NV diamonds?
- 1.10⁻²⁹ ecm feasible without progress at neutron sources!
- No moving parts, cheap!

Reach:

f	0.575.4.0			
hbar	6,57E-16	eVs		
HV	500000	V		
Cell "height"	7	cm		
E Field	71428,57143	V/cm		
alpha	0,95			
Т	350	s		
Initial UCN density (in situ!)	1000	1/cm3		
Volume	2198	cm3		
N(t= 0)	2,20E+06			
N after T	8,14E+05			
sigma_d =	1,53E-026	ecm / measurement		
Cells	100			
Factor	10			
sigma_d =	1,53E-027	ecm / measurement		
Repetitions	10000			
Factor	100			
sigma_d =	1,53E-029	ecm / measurement		

Possible detection scheme: SC wire + SQUID for polarized UCN detection

Alternative: NV diamonds?

- Factor 10 ongoing improvements:
 - ILL/TUM PanEDM being reassembled & adapted for ILL source, operational in 2018
 - LANL upgraded source in 2017
 - PSI new shields in 2018
 - TRIUMF first UCN in 2017
- Factor 100
 - SNS EDM
- TUM neutron EDM apparatus moved to ILL: ,PanEDM'
 - Systematic effects reasonably well under control for 1.10⁻²⁷ level
 - Magnetic field work has applications in different fields
- Factor 1000 in principle possible

Neutrons trapped on a wire with large current

- First trap for high-field seeking spin-states
- Closed trajectories with (sub)-millimeter distance to a mass without wall collisions
- Easy to detect decay products
- Next step: quantized states around wire

