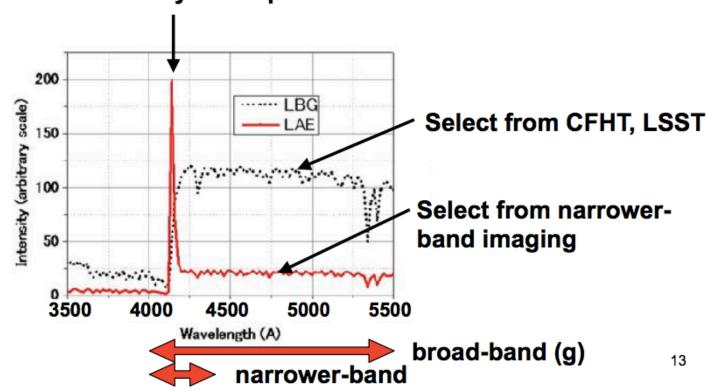
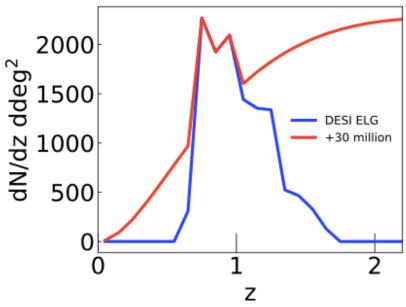


Southern Spectroscopic Survey Roadmap: Summary

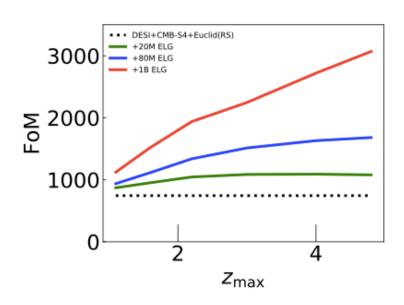
Josh Frieman, Kyle Dawson, Jeff Newman


Schlegel

Lyman-alpha emission galaxies are the lowhanging fruit at z=2—4


DESI is already the perfect instrument for these galaxies Broad-band imaging will exist in 2025 to select some Better would be narrow-band imaging to select all

Explore parameter constraints for ~arbitrary additions to DESI


- Fisher matrix calculations including multi-tracers (ELG, LRG, QSO).
- Always assume 14k sq. deg.
- Add some number of galaxies with fixed comoving density, typically over all z<z_max, although in some cases also with z>z_min.
- "ELG" means b(z)D(z)=0.84D(0)
- "LRG" means b(z)D(z)=1.7D(0)
- b(z) capped at bias corresponding to most massive halos for given number density.
- Always include DESI as planned, Planck, CMB-S4, half of Euclid redshift survey (to avoid worrying about overlap).
- Intended more to compare different scenarios than predict absolute results, because based on power spectrum with relatively simple maximum k to account for non-linearity, while real analysis would use some hideously complicated non-linear model and hopefully higher order statistics, or a complex reconstruction process.
- · 21 cm can't magically do better in the same volume

McDonald

Dark Energy TF FoM

IG. 7. DETF FoM (marginalized over neutrino mass) for 14000 sq. deg. with uniform comoving density out to z_{max}. Baseline DESI plus CMB-S4 plus Euclid redshift survey only. Improvement factors 1.5, 2.3, 4.1.

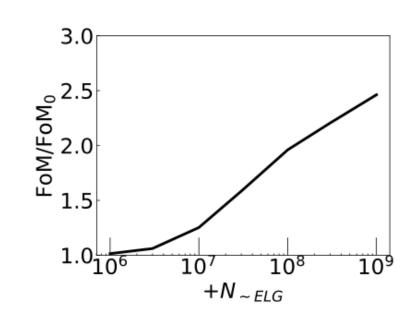
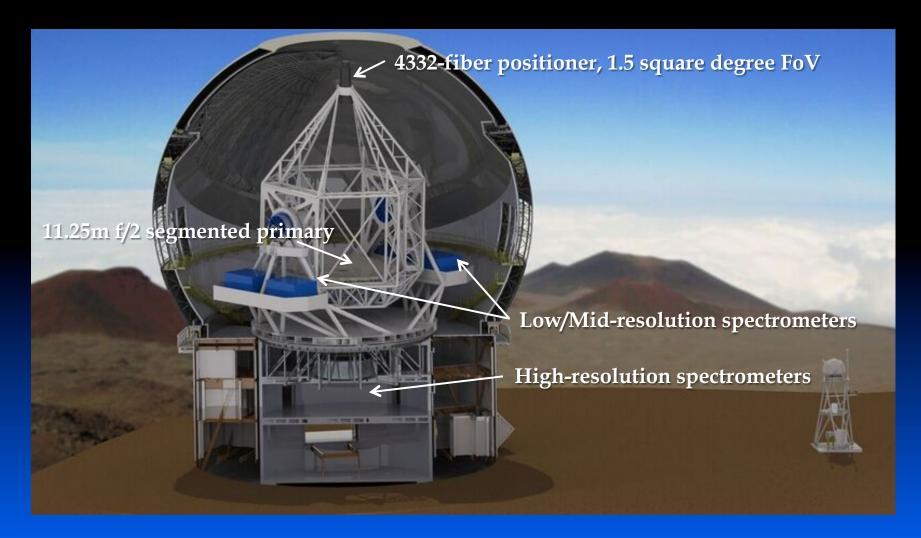


FIG. 9. Dark Energy FoM improvements for 14000 sq. deg. with uniform comoving density added over the range 2 < z < Baseline is DESI plus CMB-S4 plus Euclid redshift survey only.</p>

- Proportional to area inside w_0-w_a contours.
- Marginalize over neutrino mass.

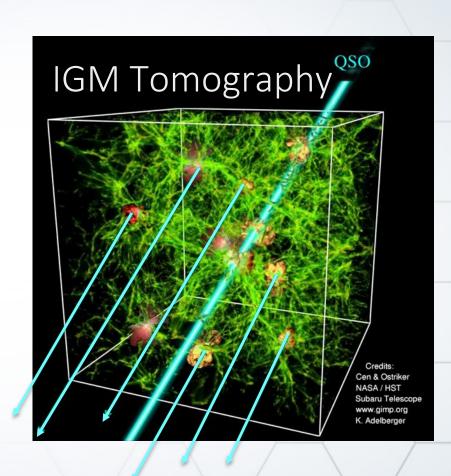
Can get factor of 2 improvement with, e.g., ~100 million galaxies in the range 2<z<3.5 (imagining LAE survey).

McDonald


Mode-Counting in the Ly-alpha Forest

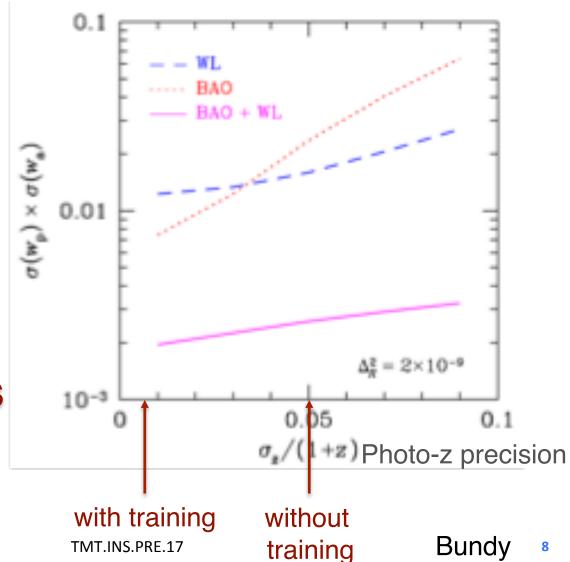
- CLAMATO at 2.0<z<2.6 yields effective comoving spatial resolution of 5Mpc/h → k_{max} ~ 0.7h/Mpc
- Ideg² over 2.0<z<2.6 covers $2 \times 10^6 \,h^{-3}Mpc^3 \rightarrow 16k \,modes/deg^2$
- 10k deg² CLAMATO-like survey over 2<z<3 would yield 200+M modes, going to non-linear (c.f. ~10-15M modes in DESI and LSST)
- ~25M background galaxies at 2.3<z<3.5
 - Cross-correlation/multi-tracer techniques between b~2 galaxies + Lyα forest
 - 2x improvement in curvature measurements c.f. Pat McDonald) from galaxies alone

 Lee


MSE is the future of CFHT

Top-level WFOS Capabilities

- Primarily multi-object survey instrument
- Also single-object rapid discovery/identification for transient science
- R~5000 spectroscopy from 310
 1000 nm
- R~1500 mode beneficial if multiplex and S/N improve
- GLAO ready


LSST Photo-z Training

LSST Forecasts

Newman et al. 2015

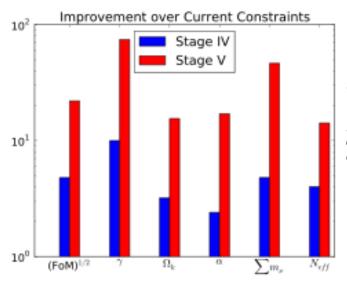
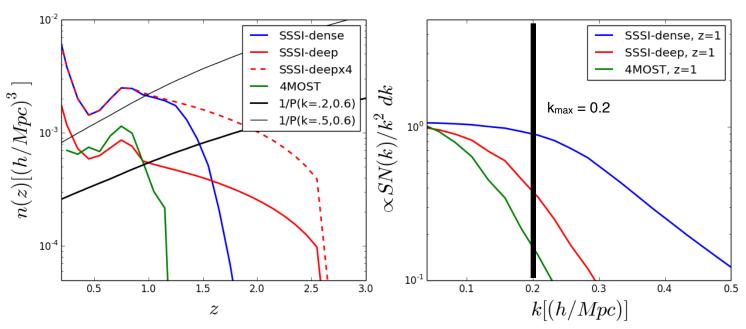

Product of errors on w and dw/da (i.e., expansion rate at a given time and its rate of change)

Photo-z training offers 50% gains on billion dollar experiments

Cosmology with a ~billion spectra

 Cosmology parameters from RSD power spectrum lots of information left in the sky

5.4 High Resolution Spectroscopy of a Billion Objects


A most ambitious project would be one that obtained high resolution spectra of a large fraction of LSST objects. Such a Billion Object Apparatus (BOA) would come close to attaining the parameter improvements depicted in the right panel of Fig. 1 and open up many avenues for new discoveries. Here we outline some

from cosmic visions report assumes $k_{max} = 0.5 \text{ h/Mpc}$

Cosmological Parameters from SSSI: SSSI Modeling

- SSSI Baseline Scenarios
 - SSSI-dense: 4xDESI-like density -> better sampling at large k
 - SSSI-deep: DESI-like + high-z sample -> extend redshift baseline
 - multi-tracer analysis with ELG, LRG, QSO samples

Krause

Cosmological Parameters from SSSI: Constraints

	Stage IV	+SSSI dense, k _{max} =.2	+SSSI dense, k _{max} =.5	+SSSI deep, k _{max} =.2	+SSSI deep, k _{max} =.5	+SSSI deepx4, k _{max} =.2	+SSSI deepx4, k _{max} =.5
FoM	1089	1486	2430	1425	1972	1697	2860
$\sigma(Wa)$	0.082	0.070	0.050	0.071	0.060	0.062	0.051
$\sigma(\boldsymbol{lpha}_{ ext{s}})$	0.0028	0.0022	0.0016	0.0022	0.0019	0.0020	0.0013
$\sigma(\mu) \ \sigma(\Sigma)$	0.019, 0.033	0.014, 0.027	-	0.015, 0.028	-	0.012 0.023	-

- NB: Lya, CMB-S4, survey cross-correlations not yet included
- Stage IV + SSSI includes improved photo-z calibration

Krause

Cosmology with a ~ billion spectra:Bispectrum

$$B_g(k_1,k_2,k_3)=b_1^3B_m(k_1,k_2,k_3)$$
 non-lin. gravitational evolution $+b_1^2b_2\left[P_m(k_1)P_m(k_2)+(2\operatorname{cyclic})
ight]$ quadratic galaxy biasing $+b_1^3$ (primordial Bispectrum) inflation

- High S/N Bispectra may uncover new physics
 - Measuring amplitude of primordial non-Gaussianity templates will distinguish between single/multi-field inflation, constrain slow roll $\sigma(f_{\rm NL}^{\rm local}) < 1 < {\rm driven\ by\ scale-dep.\ bias,\ z< 2.5}$ $\sigma(f_{\rm NL}^{\rm equal}) \sim e^{i {\rm dew}} < {\rm driven\ by\ high-z\ coverage}$ $\sigma(f_{\rm NL}^{\rm oath}) \approx a {\rm few}$
 - Anisotropic non-Gaussianity, search for features
 - Plenty of room, and S/N, for new ideas:)

Questions overlapping other groups

- Technology questions:
- GLAO
- Fiber pitch: (how) can we get to very small pitch?
- NIR detectors
- Theory questions:
- how do we exploit cosmological information at small scales?
- need to model Ly-alpha forest for forecasts
- New windows: e.g., SN hosts, GW standard sirens,...
- Will wide-band imaging be sufficient?
- e.g., potential advantages of deep spectroscopy & multiband imaging, e.g., of LSST deep drilling fields

General Questions/Issues

- Flesh out complementarity with non-cosmological science & connect with that community: will likely determine scale
- Sharpen aperture requirements for science cases
- Sharpen location (hemisphere) requirements: how much LSST overlap is needed?
- Flesh out roadmap options and carry out trade studies:
- Science requirements → Survey design → Facilities
- DESI → DESI-II → LSST spectroscopy → Dedicated facility
- 2019 2024? late 2020's? 2030's
- DESI-II: stay north, move south, clone south, or new instrument in south, e.g., with much smaller pitch?
- LSST spectroscopy: Magellan? PSF? MSE? GSMT?

Outline for a (Southern?) Spectroscopic Roadmap: ~10 pages?

- Introduction
 - A. Context in the 2020s and 2030s
 - B. XYZ
- II. Science drivers for future spectroscopy
 - A. Photometric redshift training (J. Newman)
 - A. Cosmology from nonlinear modes (Andrew Hearin, Zheng Zheng)
 - B. Constraining the galaxy-halo connection
 - C. SN hosts (Dan S, Bob K, Alex K), Gravitational wave source hosts (Marcelle, Jim A), dark matter in dwarfs (Keith B), ...
 - D. IGM (KG)
 - E. Voids, higher-order correlations & primordial NG (Elisabeth, Zach)
 - F. Connections to astrophysics science cases?
- III. Example surveys and forecasts
 - A. ABC (Jeff, Kyle, Elisabeth)
 - B. XYZ
- IV. Potential hardware for these surveys
 - A. DESI-2
 - B. DESI-South or other 4m wide field spectrograph in south
 - C. LASSI
 - D. BOA
 - E. Options with external projects: Subaru/PFS, MSE, TMT, GMT,
 - F. Technology R&D needs: GLAO (Aaron R), fiber pitch (Tom D), NIR/Ge detectors (Steve H, David S)
 - G. Cost estimates (Pat H)
- V. An integrated roadmap / Timeline