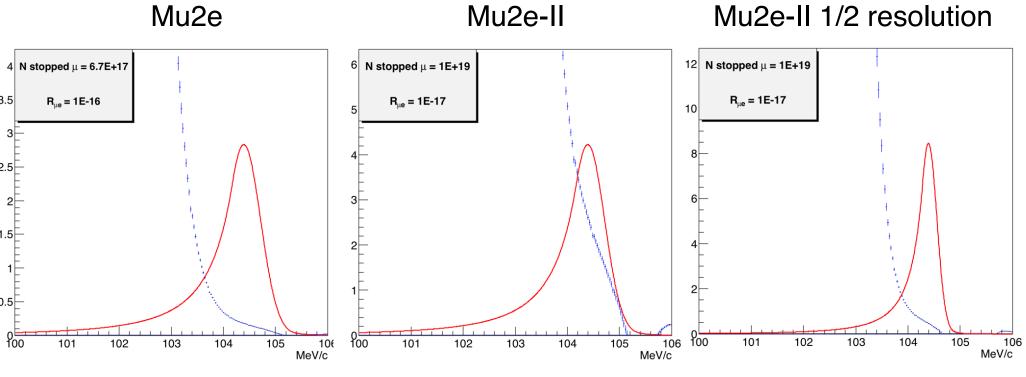
Detector R&D Overview for Mu2e-II

Detector Environment

	Mu2e	Mu2e-II	detector impact
Average Power	8KW	~100KW	10x total radiation dose (?)
Nominal peak power	24KW	~100KW	~3-4x higher radiation rate (SEU, charge load, flash,
Peak power variation	~50%	<10%	less DAQ headroom needed
Proton pulse width	250ns	<100ns	more intense flash (?) < π^- background
stopped mu/sec	1.5x10 ¹⁰	~5x10 ¹⁰	~3x accidental rate from μ nuclear captures (n, p, γ)
stopped mu (total)	6.7x10 ¹⁷	~10 ¹⁹	~10x DIO background


PS, TS, Production Target Detector impact R&D

- Flash spectrum and rate
 - Affects many detectors (tracker, STM, ...)
 - Assumed to scale with power in this talk (~10x)
- μ^{-} energy spectrum + spatial distribution
 - collimation?
- lower PS (+TS) field for 800 MeV beam ?
 - μ transport and collimation
- Extinction Monitors?

Tracker R&D

- SES/10 $\Rightarrow \sim 1/2$ momentum resolution
 - Dominated by energy straggling (target, IPA, straws)

Tracker Resolution toy MC study

Mu2e-II Workshop 8 Dec. 2017

More Tracker R&D

- Straw charge load (naively) increases by ~10x
 - 50% of active volume will integrate > 1 C/cm (current test limit)
 - 2 % > 5 C/cm
- Straw space charge increases by ~3x
 - Effect on gain not known: test in progress
- Resolution, radiation effects proportional to straw mass ⇒ need thinner straws
- Thinner straws R&D questions
 - gas leak, mechanical, manufacturing, Panel assembly, ...
- Electronics radiation dose increases by ~10x
 - Increased shielding?
 - PolarFire FPGA? Custom readout ASIC? Other components?

Stopping Target and IPA R&D

- ~2/3 the mass (momentum resolution)
 - ~1/3 from stopping target, ~1/3 from IPA
- Stopping Target optimization
 - material, mass, geometry, density, ...
- Active target or IPA?
 - Improves momentum resolution by defining the trajectory near the target
 - Si is an interesting ST material choice for $\mu^- \rightarrow e^+$
- Helical IPA (Gollin)?
 - might make sense if we're exploring an observation

Calorimeter R&D

- PID, track seeding require good timing, modest energy resolution
 - Must be able to identify CE clusters
- 3x higher accidental rate, background energy
 - Faster crystal and/or readout R&D
- 10x integrated dose
 - Crystal damage R&D
 - Alternate technologies?

CRV R&D

- Cosmic rates, integration time unchanged
 - Performance specs unchanged
- Instantaneous accidental rate ~3x (?)
 - 3/4 coincidence sufficient?
- Integrated radiation ~10x (?)
 - Will scintillator survive?
 - RPCs?
 - R&D on rad-hard sensors

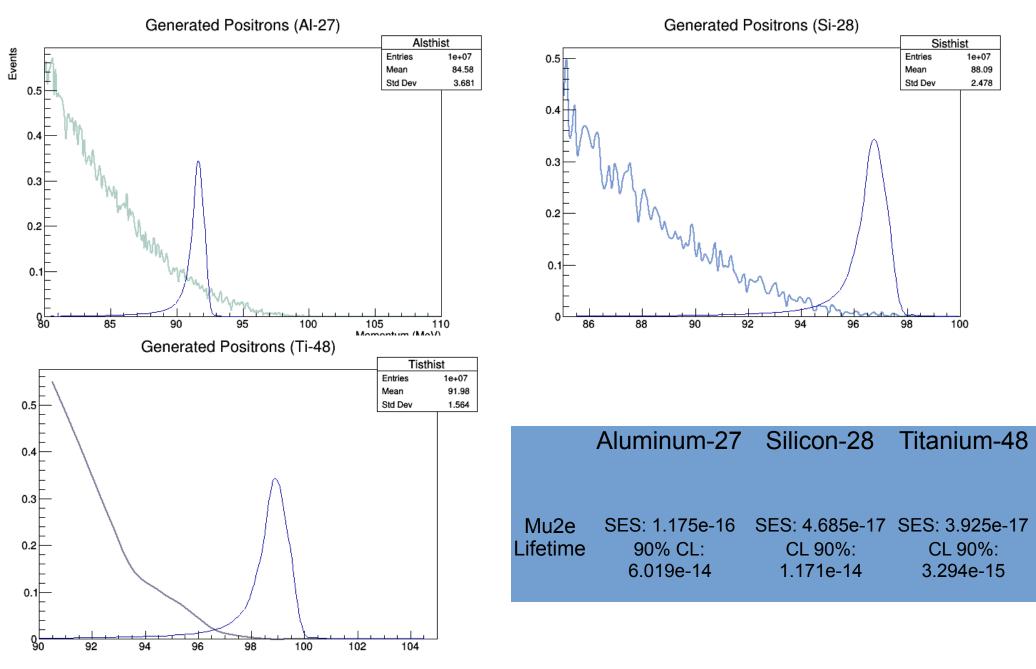
TDAQ R&D

- Algorithm efficiency/rejection tested to > Mu2e nominal
 - Scaling behavior is adequate
 - Necessary research is/will be done for Mu2e
- Rad-hard optical transceivers
 - piggy-back on HLLHC R&D (?)
- Data throughput
 - 3x higher rate
 - FPGA processing to reduced data payload?
 - compute tracker hit charge vs ADC waveform (50% reduction)
- Need 10x computation speed improvement for trigger
 - Moore's law?
 - Algorithm improvements?
 - GPU or other hardware?

Muon Counting (STM) R&D

- Ge sensors at/near dose limit for Mu2e, how can it be reduced?
 - Compton scattered electrons?
 - Beam bending crystals?
 - Other sensors?
- Prompt x-rays for other target materials?
- Muon capture product (p) reconstruction?
 - Relies on AlCap results (10%)

Conclusions


- Lots of interesting detector R&D topics to explore
- More details in following talks

Backup

Safety Factors

- Mu2e: ~X10 on dose, ~X3 on rates
- Mu2e measurements will reduce some uncertainties
 - Simulation uncertainty (X3) on rates
 - Charge tolerance of Mu2e straws
 - Production variability (?)
- R&D might start before Mu2e operations
 - Conservative option: keep Mu2e factors

$\mu^{-}(Z) \rightarrow (Z-2)e^{+}(W. \text{ Soong}, Y. \text{ Kolomensky})$

