QD/semiconductor-based scintillators and their potential for Mu2e-II

Mu2e-II workshop, ANL

P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY)

Dec 08 2017

P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY)

- the very first scintillator used in particle physics was semiconductor-based (Geiger-Marsden, ZnS)
- quantum dots (QDs): 3D nano-crystals, known from early 1980's
- confined quantum system have discrete energy levels
- emission wavelength depends on the QD size
- two main production technologies: wet growth in colloids, epitaxial growth (CVD, MBE)

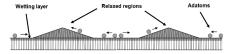


Fig. 5 Schematic drawing illustrating QD self-assembly. Two main driving forces for self-assembled growth: (1) strain-mergy is lower in 3D structure then in the uniform 2D strained layer, and (ii) stress term in surface chemical potential drives adatoms toward the tops of the islands.

- the self-assembling process controlled by thermodynamics (like water on the glass)
- deposited material has to have lattice parameter significantly different from the substrate
- InAs lattice parameter (6.06 A): 7.2% larger than GaAs lattice parameter (5.65 A)
- islands grow as a function of time
- multiple handles to control size and concentration

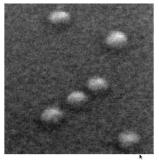
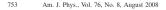
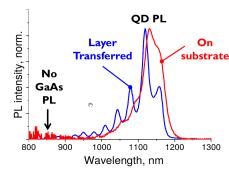
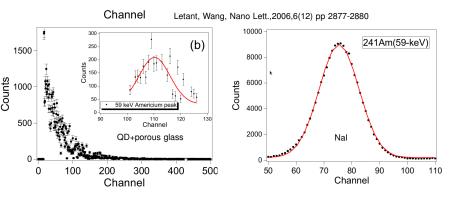
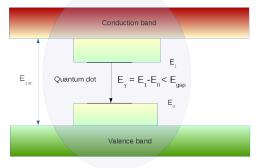




Fig. 5. Plan view scanning electron microscopy image of a small group of uncapped InAs quantum dots grown on GaAs. The field of view is 150 ×150 nm². Image courtesy of J. Fraser, Institute for Microstructural Sciences, National Research Council Canada.



- InAs / GaAs system is the best studied system
- InAs QDs emit in infrared region

RT PL spectra from the surface <u>before</u> and <u>after</u> layer transfer


QDs and photon detection

- issue: how to create medium transparent to the QD emission ?
- Letant, Wang'2006: use porous glass substrate and CdSe/ZnS QDs
- resolution @59 keV x2 better than Nal (δE/E = 15% vs 30%) at a room temperature
- use of QD's as wavelength shifters (Steve Magill discussed that for BaF2, also in neutrino physics, for 2β decay)

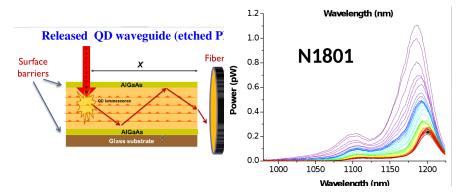
QD/semiconductor based scintillator - the idea

Kastalsky,Luryi,Spivak, NIM A565,2,p650 (2006)

• embed QDs into a semiconductor with the $E_{gap} > E_{photon}$

technology available: InAs QD's in GaAs bulk

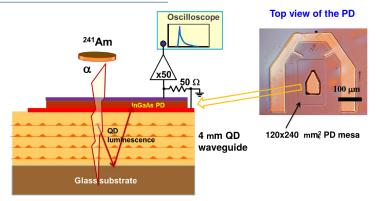
other material choices possible, however much less investigated


- 3D QD/semiconductor structure can be created by growing multiple capped QD layers
- band gap 1.4 eV => E_{pair} ~ 4.2 eV => ~ 240,000 pairs/MeV
- QD concentration of 10¹⁵/cm³: effects of re-absorption/re-emission small
- typical distance to the closest QD: $\sim 10^{-5}$ cm = 0.1 μ « free electron path length
- saturation electron drift velocity in GaAs $\sim 10^7 cm/sec$
- typical time for an electron to reach a QD \sim 1ps
- QD emission time : ~ 1 ns
- comparison to Si detectors: electron drift path 0.1 um vs 100 um

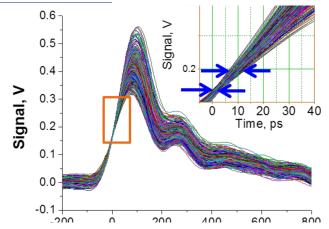
Comparison to inorganic scintillators

scintillator	density, g/cm3	X0, cm	Photon Yield, N/MeV	Decay Time, ns	Peak Emission, nm	time between first photons, tau/yield, ps
Nal(TI)	3.67	2.6	45000	250	415	5.6
BaF2	4.88	2.03	1800	0.8	190/220	0.44
LYSO	7.4	1.14	33000	40	420	1.2
PbWo4	8.2	0.9	300	2.5/11/98	490	33
InAs QD in GaAs	5.3	2.3	240000 *)	0.5	1100-1200	0.002

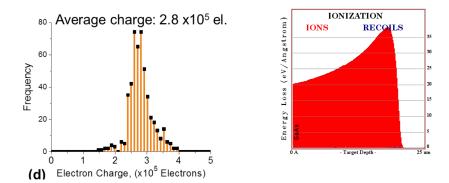
- can expect quite outstanding timing resolution
- energy resolution of the same order as Ge detectors
- all at the same time
- sensors produced as thin films, the relevant unit cm², not cm³


First measurements at SUNY Polytechnic institute with the laser

GaAs refraction index n = 3.4, only 4% of the produced light exits the sensor

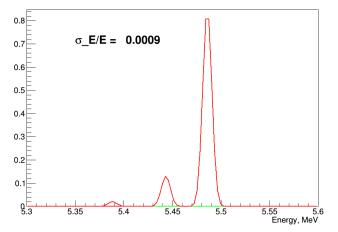

maximum of the spectrum slightly moves to the right as the distance increases

First source measurements: setup


- to collect light, need an integrated photodetector
- InGaAs photodiode processed on the sensor, detector can be thin 1-2-3 microns
- biased by 10V (unit gain)
- total thickness of the integrated InAs/GaAs detector about 5μ (4+1)
- reported measurements very preliminary

First measurements - timing

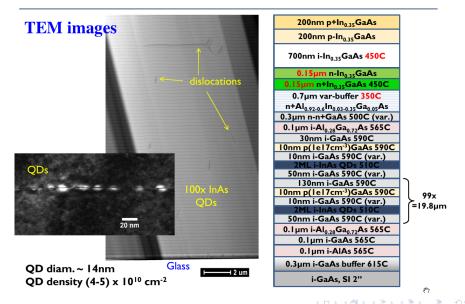
- 500 pulses detected with 40 Gsample scope, full scale 1ns
- estimated emission time \sim 300 ps
- pulse rise time \sim 140 ps
- timing resolution much better than that


First measurements - energy resolution

- 5.5 MeV α particle (²⁴¹Am) ranges out of 5 μ of GaAs, depositing there about 1.1 MeV
- resolution in the integrated charge limited by the fluctuations of the energy losses
- total collection efficiency > 90%

Expectatations for 20μ thick sensor

²⁴¹Am lines, yield 250000 photons/MeV

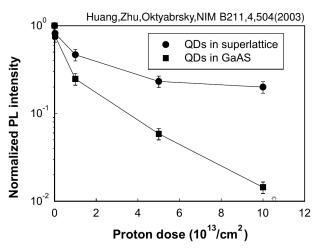


assume 100% efficiency of energy conversion

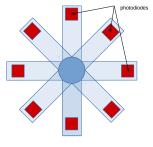
with fully stopped 5.5 MeV alpha particles can expect to resolve individual ²⁴¹Am lines

20 µm Scintillator: Structure

P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY

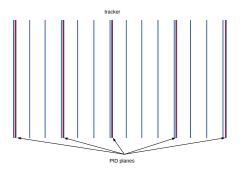

First measurements - attenuation length

most recent QD/GaAs sensor: 4mm x 0.8mm x 20 um


• attenuation length \sim 4 mm

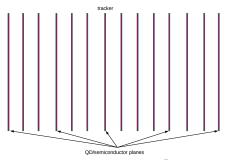
P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY

emission of InAs QD's in a 5-layer superlattice reduced by 20% after 10¹³ protons/cm²


- 99% recovery after $5 \cdot 10^{13} p/cm^2$ and 10 min annealing in N_2 at 600 deg C
- Mu2e-II: expect $\sim 10^{12}$ protons / cm²

STM cartoon

- muon capture in AI: several distinct emission lines, 350 1800 keV photons
- HP-Ge detectors may have issues with the the counting rates already for Mu2e-I
- QD/GaAs-based scintillator orders of magnitude faster
- stopping range of a 350 keV electron in GaAs \sim 300 um
- stack of 16 20µ-thick sensors with integrated photodiodes would be sufficient
- detector small, runs at a room temp, can be mounted on the tracker support structure

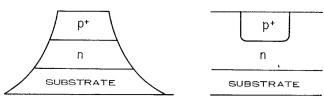

Low mass tracker with PID capabilities

- 100 MeV/c **e** crossing 10um of GaAs at 45° produces \sim 3000 e-h pairs
- 10% collection efficiency => 300 photons, dE/dX resolution about 6% per layer
- ${lackstrust}$ a 100 MeV/c muon would produce x2 photons , \sim 600
- timing: 0.5 ns / layer would be great, intrinsic resolution orders of magnitude better

 10 um of GaAs are close to material budget of one Mu2e straw tracker panel several planes of QD/GaAs scintillator positioned inside the tracker could improve robustness of tracking and, compared to current Mu2e projections, provide better PID

QD/semiconductor scintillator-based tracker with PID capabilities?

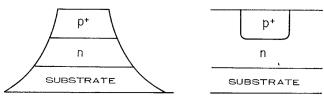
- for beam intensities x10 the current Mu2e rate (3.9 10⁷ protons/pulse) or higher, any drift-based gas detector would suffer from high occupancies
- 5 μ (?) thick QD/GaAs scintillators could provide a sensor technology for building a tracker with momentum resolution $\delta p/p \sim 2 \cdot 10^{-3}$ and built-in PID capabilities
- 500 μ pitch => $\sigma \sim$ 144 μ
- precision timing efficient triggering
- how thin could the readout electronics layer be made?
- 4µ-thick InGaAs APD's with G>10³ have been reported


Summary

- QD/semiconductor-based scintillators could have time and energy resolutions significantly surpassing best inorganic scintillators
- QDs are radiation hard : 75% of original emission intensity after 10¹³ p/cm²
- ultra-low mass tracking combined with time-of-flight and dE/dX could find multiple applications in HEP
- thin film detectors based on QD/semiconductor scintillators could allow high-resolution, ultra high-rate calorimetery at low energies (below 1 MeV)
- next generation µ → e conversion experiments could use QD/semiconductor scintillators in several subsystems: stopping target monitor, PID system, tracking
- LDRD proposal submitted to Fermilab, expect decision in early 2018

<ロト <問と < 回と < 回と。

Mesa vs Planar Photodiodes



MESA

PLANAR

イロト イポト イヨト イヨト 三日

P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY)

MESA

PLANAR

・ロット (四)・ (日)・ (日)・ (日)

P.Murat, A.Ronzhin (Fermilab), S.Oktyabrsky, M.Yakimov, V.Tokranov (SUNY Polytechnic Institute, Albany, NY)