

Observations on the feasibility of Mu2e-II Straws

Daniel Ambrose University of Minnesota 12/08/2017

Decreased Straw Wall Thickness to will reduce the DIO yield

- Mu2e-II is looking to see ~10x more captured muon
- Therefore we would expect the DIO electrons also increase by ~10x
- Reducing the material in the detector would reduce deflected DIO electrons which can act as signal

		DIO Yield
Aluminum	15 μm straws	2.14
	$8 \ \mu m \ { m straws}$	0.26
Titanium	15 μm straws	2.25
	$8 \ \mu m \ \text{straws}$	1.19

Table from Snowmass "Feasibility Study for a Next-Generation Mu2e Experiment", 9/27/13

What percent of the electron interactions with the straw is due to Mylar thickness?

	Thickness (µm)	Rad Length (g cm ⁻²)	Density (g cm ⁻³)	Ratio of $rac{\chi_{straw}}{ ho_{straw} l_{straw}}$ to $rac{\chi_i}{ ho_i l_i}$
Mylar	15	39.95	1.38	88.0%
Aluminum	0.1	24.01	2.7	1.9%
Gold	0.02	6.46	19.3	10.2%

- Current Mu2e straws consist of 15 μm Mylar, two thin layers of Al, and an inner thin layer of Au.
- Mylar thickness is the main factor in the straws interaction with electrons

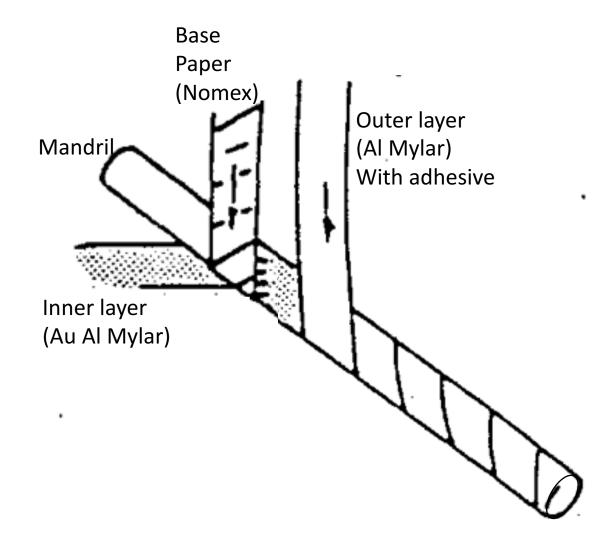
Side Note : Losing our Straw Bling

Why would we get rid of the A

- Au makes up 10^o interactions fror tracker (17.3% o straws)
- About 60% of st production cost for the Au Al My

using Al only straws , hasn't been a ictively attaching Al formed an alloy better than just Al and Al-only practice f which could be confirm or refute

Side Note : Losing our Straw Bling


Why would we want to get rid of the Au layer?:

- Au makes up 10% interactions from straws in tracker (17.3% of 8 μm straws)
- About 60% of straw production cost (\$200K) was for the Au Al Mylar

Can we? Maybe:

- The Panda experiment is using Al only straws
- Al oxide layer is very thin, hasn't been a problematic when conductively attaching
- The Mu2e straws the Au Al formed an alloy and it is unclear that it is better than just Al
- We have a couple thousand Al-only practice straws for Mu2e, a few of which could be used for aging studies to confirm or refute this idea.

Anatomy of 2 Ply Spiral Winding for Mu2e



- Each layer is 0.5 inch strip at ~45° wind
- Straws are constructed around a mandrill
- Base layer is "Nomex" paper for structure off of mandrill
 - Prevents Mylar from touching mandrill
 - ~60 μm laminate paper
- Inner layer
 - 200 Å Au inside surface
 - 500 Å Al
 - 6.1 μm Mylar[®] C Polyester Film, 24 Gauge
 - Outer Layer
 - Adhesive $4.5 \pm 0.5 \,\mu\text{m}$
 - 6.1 μm Mylar[®] C Polyester Film, 24 Gauge
 - 500 Å Al

Average straw is about 16.8 µm thick

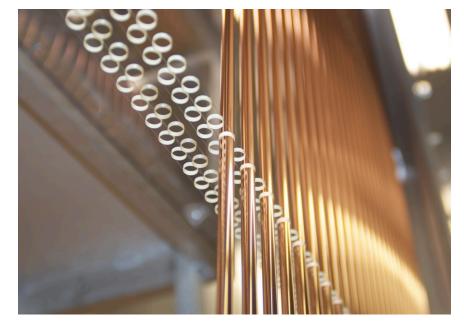
Does the material exist?

- Mylar C Polyester film comes in 2.54 $\mu m,$ 3.56 $\mu m,$ and 6.10 μm
 - Straws would be 7.0 μm, 9.7 μm, and 16.6 μm (assuming 25% adhesive layer)
- Kapton Polyimide Film also possible, but smallest size 7.5 μm

Current technology (Talking with Paramount Tubes)

They are open to seeing if thinner Mylar can be used in a similar winding method.

(doesn't have to be metalized for initial R&D).

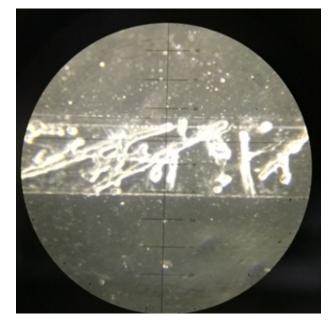

- Thinnest walled straws they have made by Spiral wound : 15 μm
- Thinnest walled straws they have made by Lateral seams : 50 $\mu m,$ not metalized, lay flat method
- Thinnest walled straws they have made by extrusion : 150 μm
- Difficulties :
 - Tension on the material could be problematic
 - Slitting might be more difficult
 - Structure for packing (thinner Nomex Paper?)

Thoughts on Lateral Seam Method

Paramount tube doesn't create straws similar to what we would like with a lateral seam.

NA62 did make straws using this method. Unknown whether this method could be used at 1/4th the straw thickness.

NA62 straws manufactured from 36 µm thin PET foils coated with two thin layers of Cu and Au.


Panos Charitos, New straw tracker for the NA62 experiment, EP Newsletter

Mu2e Straw requirements

Straw Requirements	Mu2e result	Mu2e-II difficulty
5 mm ID metalized Mylar tube	Fine	Production will be more difficult
Sustains > 1 atm pressure difference	Easily sustains > 1 atm Damaged > 4 atm	More difficult
Leak rate < 6 ccm / detector volume	Ave. Straw is half the allotted max (~15% straw failure rate)	More difficult
Straw straightness: max. transverse deviation/sagging < 0.3 mm for HV stab	Worse case straw needs > 250 g tension to retain straightness	Probably easier
800g Initial tension needed to counter for material relaxation over time.	Can handle ~2 kg before seams start stretching.	Probably easier
Sustains radiation over the life time of operation.	No noticeable charge build up when exposed to 1 C/cm	More difficult

Seams : Butt or overlap

- The CKM straw tracker found the leak rates were proportion to the seam width.
- Mu2e has seen less of an effect, mostly due to the extra outside layer of metallization.
- Instead of some parts of the straw where there is 1 layer Mylar (butt seams), it might be safer to instead have parts with 3 layer Mylar (overlap seam)
- Some possible concerns with capacitance or adhesive not fully covering overlap, This can be investigated as we made some overlap Al-only straws from mu2e

Inner Seam under a microscope, Adhesive drying leaves structure in seam

LED inside shows light through inner seam

Conclusions:

- Reducing Straw thickness would reduce DIO backgrounds
- Material is available to try and make these thinner walled straws
- Production could be attempted using current methods (limited R&D needed on part of manufacturer)
- Current Al-only straws can be used for aging studies and to answer questions:
 - Is Gold needed on the inside?
 - Structural gains/problems from overlap seams instead of butt joint?

