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Technology List
• Proof of principle development of Ground Layer adaptive optics (GLAO) 

for LSST, DESI, future spectroscopic platforms
• Germanium CCDs -- cost-effective extension of wavelength range to 1.35 

micron for imaging + spectroscopy
• Low-noise readout with Skipper CCDs -- spectroscopy, esp. in low S/N 

regime
• Ring Resonators -- OH line suppression for low-resolution infrared 

spectroscopy of SNe
• Fiber Positioners -- smaller format and/or more cost-effective

Other discussions
• Proof of principle for sky-subtraction of faint object spectroscopy
• Studies of enhancement of LSST photo-z from cross-correlations
• Develop narrow-band imaging for Lyman-alpha emitters for DESI-2 at 

z=2–3.5
• Quantum sensors (Chattopadhya) 

Presentations:
https://indico.hep.anl.gov/indico/conferenceDisplay.py?confId=1267

Google doc notes:
https://docs.google.com/document/d/1UIouMgDaCzTFyYBguC1gUm6-lbJrrCW9Zpsgts67fXg/edit#

https://indico.hep.anl.gov/indico/conferenceDisplay.py?confId=1267
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GLAO improves PSF stability for long-duration 
exposures.

Many different conditions over 15 nights. 

FWHM projected to λ = 500 nm 
Observations mostly at R (~650 nm) and I (~800 nm) 



GLAO on LSST secondary mirror 
— Weak lensing galaxies counts increase as 1/seeing^power

Adaptive Secondary Mirror



GLAO on DESI primary mirror 
— More light in the same fibers —> fainter galaxies + quasars

Adaptive Secondary Mirror
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Germanium CCDs / Expected NIR benefits

• Extend near IR 
response with Ge 

• Higher redshifts, e.g. 
z = 1.6 to 2.6 for DESI 
[O II] (Si to Ge) 

• 2x volume 

• Ge CCD effort 
underway at Lincoln 
Laboratory  

J band
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LBNL LDRD1 CCD effort

1Laboratory Directed R&D (internal LBNL Director’s funds from the DOE)

�Develop key components of Ge CCDs 
1) Buried channel MOSFETs on Ge 

» In progress 
2) Ge-compatible gate electrode 

» PolyGe doping vs deposition conditions 
» PolyGe etch development 
» Single versus multi-layer 

�High purity Ge 
�CCD process integration
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�Custom mask set contains many test structures, e.g. 
» DALSA CCD process control monitors 

• MOS capacitors, contact chains, shorts structures, etc 

» Structures to extract doping profiles (SRP / SIMS) 

» In-process aids, e.g. resolution / alignment test structures

 
LBNL LDRD1 CCD effort

1Laboratory Directed R&D (internal LBNL Director’s funds from the DOE)

Ge #29 post plasma etch

LBNL MSL

Ge #29 post 
masking step
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�Custom mask set also includes 
– Large format CCDs for yield studies and (hopefully) 

near-future (at least partially) functioning CCDs

 
LBNL LDRD1 CCD effort

1Laboratory Directed R&D (internal LBNL Director’s funds from the DOE)

� Large format CCDs allow us to study yield 
issues early on 

� 4k x 2k CCDs for multi-layer polyGe 
technology development 
� Etching, inter-polyGe isolation 

� 2k x 2k and 1k x 1k CCDs compatible with 
e-beam and deep UV lithography 

� All have 4-corner readout and frame-store 
clocks for partial CCD functionality (¼ 
serial / vertical short-free near corner) 

� Designed for parallel process development 
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SENSEI: First working instrument using SkipperCCD tech

Sensors

Skipper-CCD prototype designed by LBL MSL

200 & 250 µm thick, 15 µm pixel size

Two form factors 4k⇥1k (0.5gr) & 1.2k⇥0.7k pixels

Parasitic run, optic coating and Si resistivity ⇠10k⌦

4 amplifiers per CCD, three di↵erent RO stage designs

Instrument

System integration done at Fermilab

Custom cold electronics

Modified DES electronics for read out

Firmware and image processing software

Optimization of operation parameters

7 Cosmic Visions 2017 November 6, 2017
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DESI Exposure Time

Reduce time for DESI to observe ELGs at fixed S/N = 7
DESI CCDs (⇠ 2 e� rms/pixel) read with 2 amps in 42s

Explore decreased readout time with 16 amps

31 Cosmic Visions 2017
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Reducing Readout Time

The Problem

Current generation of Skipper-CCDs have single-read noise of
⇠ 3.5 e� rms/pixel which equates to a readout time:
100µs/ pixel with RN = 1 e� rms/pixel
10ms/ pixel with RN = 0.1 e� rms/pixel

For a large format detector (2048⇥ 4096) with 4 amplifiers, this is
200 s and 2⇥ 104 s, respectively.

Paths for Development

Reduce starting readout noise (DESI CCDs have ⇠ 2 e� rms/pixel)

Repeated readout for only a subset of pixels (known line position)

Increase the number of readout channels/amplifiers (� 16 amps?)

Use frame shifting to readout during subsequent exposure

32 Cosmic Visions 2017
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How Do Ring Resonators Work? 

Silicon ring and 
waveguides 
fabricated at 
Argonne

25µm single SiN ring with 
different modes (7nm gaps)

 

Free Spectral Range 
(gap between modes):

Fig. 2. Top panel: schematic diagram of a simple ring resonator showing the input, through
and drop ports and a sketch of the spectrum at each port. Bottom panel: SEM image
of one of our prototype silicon-based ring resonators with a through port and drop port,
manufactured at the Center for Nanoscale Materials at Argonne National Laboratory.

remains. The condition for resonance is therefore

mλ = neL, (1)

where m is an integer, λ is the wavelength, ne is the effective index and L is the circumference of
the ring. The resonant light couples back into the input waveguide and destructively interferes
with the input light. Thus, a series of ring resonators, each tuned to the wavelength of a different
OH night sky line, could provide a means of OH suppression [25].
Ring resonators have been developed for applications in telecommunications, industry, and

photonics research as filters, add/drop multiplexers, delay lines, modulators, sensors, laser
generation, tuneable dispersion compensators, all-optical wavelength converters, frequency
combs, and tuneable cross-connects [26–28]. The motivation to explore the use of ring
resonators for OH suppression is primarily due to their method of manufacture. Ring resonators

                                                                                               Vol. 25, No. 14 | 10 Jul 2017 | OPTICS EXPRESS 15873
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DESI Fiber Positioners

411/14/2017Joseph H. Silber

• 10.4 mm pitch between neighboring units
• 2 rotational axes
• Driven by independent ø4 mm 337:1 gear motors
• Integrated drive electronics
• 20 parts + 10 fasteners
• Developed by Berkeley
• Production by University of Michigan
• Blind moves: 25-50 µm max error
• After correction move: 1-2 µm RMS error
• Tested to 600,000+ repositionings (and counting...)
• Have produced over 1000 units (and counting...)
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Scaling of focal plane
o On DESI, we packed 5000 positioners at mean pitch of 

10.525 mm into a ø812 mm aspheric focal surface
o Rough rule of thumb you could extract from the final DESI 

design:
• ultimate # of science positioners = 0.84*(FP_diam / pitch)²
• this 84% packing efficiency is obviously not some perfectly 

efficient HCP = 90.7%
• instead it is a very real-world and practical number, that 

includes room for 100 fiducials, 10 guide/focus cameras, 
mechanical tolerances, aspherical geometry, mounting 
features, etc

o So if you wanted 25,000 positioners at say 11 mm pitch, 
you would need a focal surface that is ø1.9 m

o My personal intuition is that the right approach to scaling 
up in a next generation project is

• don’t try to squeeze positioners any smaller
• instead focus on enabling a bigger ø focal surface
• this focuses the “new technology” effort on what I consider 

the easy and monolithic stuff – a few ray traces done early 
on in the project

• our DESI positioners work great and we truly now can 
manufacture 5000 of them in about 10 months – but it took 
7 years and millions of $ to get to this point!

1411/14/2017Joseph H. Silber

DESI-0530 gives all the 
details, as well as summaries, 
of the DESI focal plane layout
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Technology List
• Proof of principle development of Ground Layer adaptive optics (GLAO) 

for LSST, DESI, future spectroscopic platforms
- Jessica Lu demonstrating on ~1 deg field
- opportunity for replacement of LSST secondary mirror (3.5-m)
- opportunity for replacement of DESI primary mirror (3.8-m)
- site testing may show different improvements at different sites
- expensive item are voice-coil active mirrors, single vendor

• Germanium CCDs
- cost-effective extension of wavelength range to 1.35 micron for 

imaging + spectroscopy
- LDRD-supported in 2018-2019, SBIR-supported for high-purity Ge 

wafers
• Low-noise readout with Skipper CCDs

- spectroscopy, esp. in low S/N regime
• Ring Resonators

- OH line suppression for low-resolution infrared spectroscopy of SNe
• Fiber Positioners

- smaller format either with DESI design or tilting spines
- more cost-effective
- injection-molding, …?


