Cosmic Visions: New Technology Development

Nov 2017 summary

Technology List

- Proof of principle development of Ground Layer adaptive optics (GLAO) for LSST, DESI, future spectroscopic platforms
- Germanium CCDs -- cost-effective extension of wavelength range to 1.35 micron for imaging + spectroscopy
- Low-noise readout with Skipper CCDs -- spectroscopy, esp. in low S/N regime
- Ring Resonators -- OH line suppression for low-resolution infrared spectroscopy of SNe
- Fiber Positioners -- smaller format and/or more cost-effective

Other discussions

- Proof of principle for sky-subtraction of faint object spectroscopy
- Studies of enhancement of LSST photo-z from cross-correlations
- Develop narrow-band imaging for Lyman-alpha emitters for DESI-2 at z=2-3.5
- Quantum sensors (Chattopadhya)

Presentations:

https://indico.hep.anl.gov/indico/conferenceDisplay.py?confld=1267

Google doc notes:

https://docs.google.com/document/d/1UlouMgDaCzTFyYBguC1gUm6-lbJrrCW9Zpsgts67fXg/edit#

Science targets

Ground Layer Adaptive Optics

> Multiples Guide Stars

Correct Lowest Turbulence

24' x 18' 'imaka Field

11' x 11' Optical

7' x 7' Infrared

PI: M. Chun PS: J. Lu

GLAO improves PSF stability for long-duration exposures.

Many different conditions over 15 nights.

FWHM projected to $\lambda = 500$ nm Observations mostly at R (~650 nm) and I (~800 nm)

GLAO on LSST secondary mirror – Weak lensing galaxies counts increase as 1/seeing^power

Adaptive Secondary Mirror

GLAO on DESI primary mirror – More light in the same fibers –> fainter galaxies + quasars

Adaptive Secondary Mirror

Germanium CCDs / Expected NIR benefits

LBNL LDRD¹ CCD effort

Develop key components of Ge CCDs

- 1) Buried channel MOSFETs on Ge
 - » In progress
- 2) Ge-compatible gate electrode
 - » PolyGe doping vs deposition conditions
 - » PolyGe etch development
 - » Single versus multi-layer
- High purity Ge
- CCD process integration

LBNL LDRD¹ CCD effort

Custom mask set contains many test structures, e.g.

- » DALSA CCD process control monitors
 - MOS capacitors, contact chains, shorts structures, etc
- » Structures to extract doping profiles (SRP / SIMS)
- » In-process aids, e.g. resolution / alignment test structures

¹Laboratory Directed R&D (internal LBNL Director's funds from the DOE)

LBNL LDRD¹ CCD effort

Custom mask set also includes

 Large format CCDs for yield studies and (hopefully) near-future (at least partially) functioning CCDs

- Large format CCDs allow us to study yield issues early on
- 4k x 2k CCDs for multi-layer polyGe technology development
 - Etching, inter-polyGe isolation
- 2k x 2k and 1k x 1k CCDs compatible with e-beam and deep UV lithography
- All have 4-corner readout and frame-store clocks for partial CCD functionality (1/4 serial / vertical short-free near corner)
- Designed for parallel process development

SENSEI: First working instrument using SkipperCCD tech

Sensors

- Skipper-CCD prototype designed by **LBL MSL**
- \bullet 200 & 250 $\mu{\rm m}$ thick, 15 $\mu{\rm m}$ pixel size
- Two form factors $4k \times 1k$ (0.5gr) & $1.2k \times 0.7k$ pixels
- $\bullet\,$ Parasitic run, optic coating and Si resistivity ${\sim}10 k\Omega$
- 4 amplifiers per CCD, three different RO stage designs

Instrument

- System integration done at Fermilab
- Custom cold electronics
- Modified DES electronics for read out
- Firmware and image processing software

Fermilab

Optimization of operation parameters

DESI Exposure Time

Reducing Readout Time

The Problem

- Current generation of Skipper-CCDs have single-read noise of $\sim 3.5 \,\mathrm{e^-\,rms/pixel}$ which equates to a readout time: 100 $\mu\mathrm{s}/\mathrm{pixel}$ with $\mathrm{RN} = 1 \,\mathrm{e^-\,rms/pixel}$ 10 ms/ pixel with $\mathrm{RN} = 0.1 \,\mathrm{e^-\,rms/pixel}$
- For a large format detector (2048 \times 4096) with 4 amplifiers, this is 200 s and 2 \times 10⁴ s, respectively.

Paths for Development

- Reduce starting readout noise (DESI CCDs have $\sim 2\,\mathrm{e^-\,rms/pixel})$
- Repeated readout for only a subset of pixels (known line position)
- Increase the number of readout channels/amplifiers (≥ 16 amps?)
- Use frame shifting to readout during subsequent exposure

How Do Ring Resonators Work?

DESI Fiber Positioners

- 10.4 mm pitch between neighboring units
- 2 rotational axes

U.S. DEPARTMENT OF

- Driven by independent ø4 mm 337:1 gear motors
- Integrated drive electronics
- 20 parts + 10 fasteners
- Developed by Berkeley
- Production by University of Michigan

Joseph H. Silber

- Blind moves: 25-50 µm max error
- After correction move: 1-2 µm RMS error
- Tested to 600,000+ repositionings (and counting...)
- Have produced over 1000 units (and counting...)

11/14/2017

Advancing Science by Design

ENGINEERING DIVISION BERKELEY L

01

Scaling of focal plane

- On DESI, we packed 5000 positioners at mean pitch of 10.525 mm into a ø812 mm aspheric focal surface
- Rough rule of thumb you could extract from the final DESI design:
 - ultimate # of science positioners = **0.84***(FP_diam / pitch)²
 - this 84% packing efficiency is obviously not some perfectly efficient HCP = 90.7%
 - instead it is a very real-world and practical number, that includes room for 100 fiducials, 10 guide/focus cameras, mechanical tolerances, aspherical geometry, mounting features, etc
- So if you wanted 25,000 positioners at say 11 mm pitch, you would need a focal surface that is ø1.9 m
- My personal intuition is that the right approach to scaling up in a next generation project is
 - don't try to squeeze positioners any smaller
 - instead focus on enabling a bigger ø focal surface
 - this focuses the "new technology" effort on what I consider the easy and monolithic stuff – a few ray traces done early on in the project
 - our DESI positioners work great and we truly now can manufacture 5000 of them in about 10 months – but it took 7 years and millions of \$ to get to this point!

Focal plane layout summary			
Patterning code and results files	-	https://desi.lbl.gov/svn/code/focalplane/	
Results files from patterning	-	https://desi.lbl.gov/svn/code/focalplane/	
Corrector Prescription	-	per DESI-0329-v15	
FOV	deg	3.2	
Focal Surface Diameter	mm	811.8	3.2deg FOV equivalent
Positioner Envelope	-	per DESI-595-v4	positioner envelope base
Patrol Radius	mm	6.0	
Area	deg ^z	8.042	
petals	-	10	
positioners	-	5000	
GFAs	-	10	
field fiducials (FIF)	-	100	
GFA fiducials (GIF)	-	20	
min pitch	mm	10.416	Note these tabulations of
max pitch	mm	15.605	
mean pitch	mm	10.525	
stdev pitch	mm	0.469	
mean uncovered area	-	0.067	Note these tabulations of
mean coverage density	-	1.103	value > 1 implies net ove
positioner and fiducial coverage area	deg ^z	7.504	
positioner coverage density	1/deg²	666.3	i.e. positioners / deg²

DESI-0530 gives all the details, as well as summaries, of the DESI focal plane layout

Advancing Science by Design

ENERGY Joseph H. Silber

11/14/2017 14

ENGINEERING DIVISION

Technology List

- Proof of principle development of Ground Layer adaptive optics (GLAO) for LSST, DESI, future spectroscopic platforms
 - Jessica Lu demonstrating on ~1 deg field
 - opportunity for replacement of LSST secondary mirror (3.5-m)
 - opportunity for replacement of DESI primary mirror (3.8-m)
 - site testing may show different improvements at different sites
 - expensive item are voice-coil active mirrors, single vendor
- Germanium CCDs
 - cost-effective extension of wavelength range to 1.35 micron for imaging + spectroscopy
 - LDRD-supported in 2018-2019, SBIR-supported for high-purity Ge wafers
- Low-noise readout with Skipper CCDs
 - spectroscopy, esp. in low S/N regime
- Ring Resonators
 - OH line suppression for low-resolution infrared spectroscopy of SNe
- Fiber Positioners
 - smaller format either with DESI design or tilting spines
 - more cost-effective
 - injection-molding, ...?