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Figure 4. Left: Varying the minimum scale included in galaxy clustering and galaxy galaxy lensing measurements. We show the baseline 3x2pt functions,
which assumes Rmin = 10Mpc/h (black/solid), and corresponding constraints when using Rmin = 20Mpc/h (red/dashed), Rmin = 50Mpc/h (blue/dot-dashed),
Rmin = 0.1Mpc/h (green/long-dashed) instead. For the latter we switch from linear galaxy bias modeling to our HOD implementation. Right: Information gain
when using HOD instead of linear galaxy bias for 3x2pt (black solid vs dashed contours) in comparison to corresponding information gain when including
cluster number counts and cluster weak lensing in the data vector (violett/dot-dashed vs long-dashed).
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Figure 5. Change in cosmological constraints when varying the underlying
cosmological model in the covariance matrix. We show three scenarios: 1)
the fiducial cosmology (black/solid), 2) fiducial cosmology but a 10% lower
value in �8 and ⌦m (red/dashed), and 3) fiducial cosmology but changes in
the dark energy parameters, i.e. w0 =�1.3 and wa =�0.5 (blue/dot-dashed).
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with z= z(�). The j dependent term is the normalized distribution of
source galaxies in redshift bin j, fred is the fraction of red galaxies
which is evaluated as a function of limiting magnitude mlim = 27,
and P�I the cross power spectrum between intrinsic galaxy orienta-
tion and matter density contrast.

The IA contamination of our data vector assumes a DEEP2
luminosity function (Faber et al. 2007) and the tidal alignment sce-
nario described in Blazek et al. (2015); Krause et al. (2016). The

tidal alignment scenario is in good agreement with observations;
using the DEEP2 luminosity function should be considered as an
upper limit of the strength of IA contaminations.

In Fig. 6 we compare the baseline analysis for cosmic shear
and 3x2pt (no IA contamination) to the case where IA contami-
nates the data vectors. In the latter case we marginalize over 10
nuisance parameters (4 for IA and 6 for luminosity function uncer-
tainties, see Krause et al. 2016, for details) to account for the IA
contamination. Although we assume the tidal alignment scenario
as a contaminant, we choose a di↵erent IA model for the marginal-
ization (non-linear alignment with the Halofit fitting formula) to
mimic a realistic analysis.

We find that in the presence of multiple probes, photo-z, shear
calibration and galaxy bias uncertainties, the assumption of an im-
perfect IA model in the marginalization is negligible. As expected
when including 10 more dimensions in the analysis the constraints
weaken but again the e↵ect is not severe. Note that the 3x2pt data
vector only includes galaxy-galaxy lensing tomography bins for
which the photometric source redshifts are behind the lens galaxy
redshift bin. Hence only a small fraction of source galaxies in
the low-z tail of the redshift distribution contribute an IA signal
to galaxy-galaxy lensing. As a consequence the 3x2pt data vector
contains only marginally more information on IA, and improve-
ments in the self-calibration of IA parameters is largely due to the
enhanced constraining power on parameters which are degenerate
with IA.

5 Discussion

The first step in designing a multi-probe likelihood analysis is to
specify the exact details of the data vector. This is far from trivial;
the optimal data vector is subject to various considerations.

• Science case This paper focusses on time-dependent dark en-
ergy as a science case with the fiducial model being ⇤CDM. If
there was indication for time-dependence, the data vector can be
optimized (tomography bins, galaxy samples, scales) such that it is
most sensitive to these signatures. The same holds when extending
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This exercise was for single-tracer probes
Far more information from multi-tracer cross-correlations

Gains from Small Scales
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There is a VAST amount of additional constraining power 
that we are simply throwing away if we only stick with single-tracer, quasi-linear probes

We can surely do better, probably a lot



Cosmic Visions Crossroads

Quasi-linear “gold sample” cosmology

Big picture choice for the future
under discussion at this meeting

• Incremental mode-collecting for business-as-usual 1/sqrt(N) gains
• weak potential for genuinely novel discovery
• Safe path to improve existing constraints on existing vanilla models

• Forward-model nonlinear clustering, gg-lensing, cluster cross-correlations
• Actually use the full predictive power of simulations 
• Take seriously the LSST/DESI opportunity to genuinely probe new physics

Nonlinear multi-tracer cosmology
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Figure 5. Left panels: Comparison between observed galaxy autocorrelation functions at z ⇠ 0 (Appendix C5) and the best-fitting model. Right panels: Weak
lensing shear (DS) from the best-fit model compared to z ⇠ 0 observations (Watson et al. 2015) for three M⇤ threshold samples. All distances and areas are in
comoving units. Weak lensing data were not used as input constraints.

vironmental dependence of central galaxy quenching (again newly
measured from the SDSS) as it is a significantly stronger and more
robustly measurable effect as compared to, e.g., two-halo galactic
conformity.

3.2 Simulations

We use the Bolshoi-Planck dark matter simulation (Klypin et al.
2016; Rodriguez-Puebla et al. 2016a) for halo properties and as-
sembly histories. Bolshoi-Planck follows a periodic, comoving vol-
ume 250 h�1 Mpc on a side with 20483 particles (⇠ 8 ⇥ 109),
and was run with the ART code (Kravtsov et al. 1997; Kravtsov &

Klypin 1999). The simulation had high mass (1.6⇥ 108h�1 M�),
force (1 h�1 kpc), and time output (180 snapshots spaced equally in
log(a)) resolution. The adopted cosmology (flat LCDM; h= 0.678,
Wm = 0.307, s8 = 0.823, ns = 0.96) is compatible with Planck15
results (Planck Collaboration et al. 2015). We also use the MDPL2
dark matter simulation (Klypin et al. 2016; Rodriguez-Puebla et al.
2016a) to calculate covariance matrices for autocorrelation func-
tions. MDPL2 adopts an identical cosmology to Bolshoi-Planck,
except for assuming s8 = 0.829, and follows a 1 h�3 Gpc3 region
with 38403 particles (⇠ 57⇥ 109). The mass (2.2⇥ 109 M�) and
force (5 h�1 kpc) resolution are coarser than for Bolshoi-Planck.
For both simulations, halo finding and merger tree construction
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Figure 2. Left panel: Comparison between observed stellar mass functions (Appendix C2) and the best-fitting model.
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Figure 3. Left panel: Comparison between observed cosmic star formation rates (Appendix C3) and the best-fitting model. Right panel: Comparison between
observed stellar mass functions (Appendix C3) and the best-fitting model.
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Figure 4. Left panel: Comparison between observed UV luminosity functions from Finkelstein et al. (2015a) and Bouwens et al. (2015) and the best-fitting
model. Right panel: comparison between central galaxy quenched fractions (as a function of neighbor density; Appendix C6) and the best-fitting model.

PRIMUS, ULTRAVISTA, CANDELS, and ZFOURGE surveys,
cover 0 < z < 8.5, and were renormalized as necessary to ensure
consistent modeling assumptions (Table C1) and photometry for
massive galaxies (Fig. C1). As noted in Kravtsov et al. (2014),
improved photometry for massive galaxies significantly increases
their stellar mass to halo mass ratio as compared to Behroozi et al.
(2013e). SSFRs and CSFRs cover 0 < z < 10.5 and were only
renormalized to a Chabrier (2003) initial mass function, as match-
ing other modeling assumptions does not increase self-consistency
between SFRs and the growth of SMFs (Madau & Dickinson 2014;
Leja et al. 2015; Tomczak et al. 2016). Quenched fractions, from

Moustakas et al. (2013) and Muzzin et al. (2013), cover the range
0 < z < 3.5. As discussed in Appendix C4, these two papers use
different definitions for “quenched” (SSFR cut and UVJ cut, re-
spectively), which we self-consistently model when comparing to
each paper’s results.

Correlation functions for all, quenched, and star-forming
galaxies are newly measured from the SDSS (Appendix C5), with
covariance matrices measured from mock catalogs of significantly
greater volume. CFs are disproportionately sensitive to satellite
quenching, and an additional statistic is necessary to test central
galaxy quenching. As discussed in Appendix C6, we use the en-
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consistent modeling assumptions (Table C1) and photometry for
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improved photometry for massive galaxies significantly increases
their stellar mass to halo mass ratio as compared to Behroozi et al.
(2013e). SSFRs and CSFRs cover 0 < z < 10.5 and were only
renormalized to a Chabrier (2003) initial mass function, as match-
ing other modeling assumptions does not increase self-consistency
between SFRs and the growth of SMFs (Madau & Dickinson 2014;
Leja et al. 2015; Tomczak et al. 2016). Quenched fractions, from

Moustakas et al. (2013) and Muzzin et al. (2013), cover the range
0 < z < 3.5. As discussed in Appendix C4, these two papers use
different definitions for “quenched” (SSFR cut and UVJ cut, re-
spectively), which we self-consistently model when comparing to
each paper’s results.

Correlation functions for all, quenched, and star-forming
galaxies are newly measured from the SDSS (Appendix C5), with
covariance matrices measured from mock catalogs of significantly
greater volume. CFs are disproportionately sensitive to satellite
quenching, and an additional statistic is necessary to test central
galaxy quenching. As discussed in Appendix C6, we use the en-
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Program is Well Underway

Model built for scalability from ground-up 80/100 Mira-Titan sims already on disk

Program is not simulation-limited
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Figure D1. Top panel: test that the parametrization for fQ(vMpeak,z) in Eqs.
11–14 (lines) is flexible enough to match the observed data (points) in Ap-
pendix C4 (see Appendix D1). Bottom panel: test that the parametrization
for SFRSF in Eqs. 5–10 (lines) is flexible enough to match constraints from
Behroozi et al. (2013e) (points), as discussed in Appendix D2.

APPENDIX D: VERIFYING FUNCTIONAL FORMS

D1 Quenched Fraction

The quenched fraction as a function of M⇤ is measurable directly
(Appendix C4), but the quenched fraction as a function of vMpeak is
not. Yet, assuming that the scatter in M⇤ at fixed vMpeak is not too
correlated with SFR, the two are related by a convolution:

fQ(M⇤) =
Z •

0
fQ(vMpeak)P(M⇤|vMpeak)dvMpeak (D1)

where P(M⇤|vMpeak) is the probability distribution of M⇤ as a func-
tion of vMpeak. Given that the quenched fraction is bounded be-
tween 0 and 1 and that it increases with stellar mass (and therefore
increases with vMpeak), it is natural to try a sigmoid function for
fQ(vMpeak), as in Eq. 11.7

We test the parametrization for fQ(vMpeak,z) in Eqs. 11-14 via
forward-modeling through Eq. D1 and comparing to the observed
fQ(M⇤,z) (Fig. D1, upper panel). Briefly, we obtain P(M⇤|vMpeak)
at the median redshift of each stellar mass bin in Moustakas et al.
(2013) and Muzzin et al. (2013) via abundance matching the cor-
responding SMFs to halos rank-ordered by vMpeak, with 0.2 dex

7 There may be an increase in the quenched fraction toward extremely low
stellar masses (Wetzel et al. 2015); however, these are well below the halo
mass resolution limit of the simulations we use.
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Figure E1. Strong scaling performance of the UNIVERSEMACHINE code
on Edison. Near-linear speedup with the number of processors is achieved.

scatter (matching Reddick et al. 2013). Any choice of parame-
ters in Eqs. 13-14 fully specifies fQ(vMpeak,z), from which Eq. D1
predicts the observed fQ(M⇤). Using the standard likelihood func-
tion (exp(�0.5c

2)) and the EMCEE algorithm to explore parameter
space, we find that Eqs. 11–14 are flexible enough to provide a rea-
sonable fit to the observed data.

D2 Star-formation Rates for Star-forming Galaxies

The constraints on hSFR(Mpeak,z)i in Behroozi et al. (2013e) guide
our functional form for SFRSF(vMpeak,z). The median vMpeak as a
function of halo mass and redshift in Bolshoi-Planck is

vMpeak(Mh,a) = 200kms�1


Mh

M200kms(a)

�3
(D2)

M200kms(a) =
1.64⇥1012 M�� a

0.378
��0.142

+
� a

0.378
��1.79 (D3)

Then, hSFRi and SFRSF are related as

SFRSF(vMpeak,z)⇡C
s

hSFR(Mpeak(vMpeak,a),z)i
1� fQ(vMpeak,z)

(D4)

where C
s

is a constant depending on the scatter in SFR at fixed
vMpeak; the equation is not exact due to very modest scatter in
vMpeak at fixed Mpeak. For fQ, we use the best fit from Appendix
D1; the resulting estimate of SFRSF is shown as filled circles in
Fig. D1, bottom panel. As in Appendix D1, we use the EMCEE al-
gorithm to explore parameter space, finding again that Eqs. 5–10
are flexible enough to provide a reasonable fit to the constraints
in Behroozi et al. (2013e). Notably, simpler parameterizations (in-
cluding double power-laws) would not be sufficient, due to an ex-
tra bump in efficiency near the transition between low-vMpeak and
high-vMpeak power laws.

APPENDIX E: CODE IMPLEMENTATION,
PARALLELIZATION, AND SCALING

The EMCEE MCMC algorithm (Foreman-Mackey et al. 2013) is
naturally parallelizable; we use a custom implementation in C. In
this algorithm, multiple walkers (100–1000) simultaneously tra-
verse parameter space, leapfrogging over each other to select new
points to explore. No communication is required between walkers,
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2 The Q Continuum Simulation

FIG. 2.— Time evolution of the matter distribution between z = 4 to z = 0. Shown is the output from one of the 16,384 nodes the simulation was run on. The
visualizations here and in Figure 4 are generated with the vl3 parallel volume rendering system (Hereld et al. 2011) using a point sprite technique.

volume, number of particles evolved, and ⌦m) are used as the
master variables in the figure. The ideal survey simulation aims
to be as close to the upper right corner as possible, characterized
by a sufficiently large volume and with high mass resolution.

In Figure 1 we have also attempted to capture the range of
N-body methods used in cosmology, including pure tree codes
such as 2HOT used for the recent DarkSky simulations (Skill-
man et al. 2014), hybrid tree particle-mesh (TPM) codes such as
GADGET-2 and variants used for the Millennium simulations,
the MultiDarkP simulation1, the MICE simulations (Fosalba et
al. 2013) as well as one of the HACC implementations used
for the Outer Rim simulation (Habib et al. 2014), in addition to
particle-particle particle-mesh (P3M) codes such as the HACC
implementation used in this paper for the Q Continuum sim-
ulation and CUBEP3M used for the Jubilee suite (Watson et
al. 2014), and finally the adaptive mesh refinement-based code
ART (Adaptive Refinement Tree), used for the Bolshoi simula-
tion (Klypin et al. 2011).

The computational costs for moving towards the upper right
corner in Figure 1 are severe (Power et al. 2003). Higher mass
resolution requires higher force resolution and increased time-
resolution to accurately resolve structures forming on small
scales. For instance, cluster-scale halos are resolved with many
millions of particles (the largest cluster in the Q Continuum
simulation has more than 25 million particles) adding signifi-
cantly to the overall computational costs. Another difficulty in
increasing the size of simulations is the available memory. Only
the largest supercomputers possess sufficient system memory to
allow state of the art simulations. Unlike the maximum avail-
able computational power, which continues to steadily increase
(although becoming harder to use), the available system mem-
ory is not keeping pace with performance (Kogge and Resnick
2013).

To overcome current and future challenges posed by large
cosmological simulations with high mass and force resolution,
we have designed the HACC (Hardware/Hybrid Accelerated
Cosmology Code) framework, as described in Habib et al.
(2009); Pope et al. (2010); Habib et al. (2014). HACC runs
very efficiently on all currently available supercomputing archi-
tectures at full scale, and is responsible for some of the largest
cosmological simulations run to date. In particular, HACC per-
forms very well on accelerated systems, such as Titan at the

1http://www.cosmosim.org/cms/simulations/multidark-project/mdpl/

Oak Ridge Leadership Computing Facility2, the machine used
for the simulation described in this paper. Titan is comprised
of 18,688 compute nodes, each containing a 16-core 2.2 GHz
AMD Opteron 6274 processor with 32 GB of RAM. In addi-
tion, all of Titan’s compute nodes contain an NVIDIA Kepler
accelerator (GPU) with 6 GB of local memory. This combi-
nation leads to more than 20 PFlops of peak performance, en-
abling the Q Continuum simulation described here. The Q Con-
tinuum simulation evolves more than 549 billion particles in a
(1300 Mpc)3 volume. Figure 2 shows the time evolution of the
matter distribution from the output of a single node (the full
simulation run was carried out on 16,384 nodes), covering a
volume of ⇠(81 Mpc ⇥ 81 Mpc ⇥ 41 Mpc). These images give
an impression of the detail in the matter distribution as resolved
by this simulation.

The Q Continuum run has been designed to address a number
of scientific targets. Because of its large dynamic range in both
space and mass, it allows accurate calculations of several quan-
tities, such as the mass power spectrum, the halo mass func-
tion, and the halo concentration-mass relation, without having
to resort to using nested simulations. Another of its key sci-
entific goals is the creation of realistic synthetic sky maps for
surveys such as DES3 (Dark Energy Survey), DESI4 (Dark En-
ergy Spectroscopic Instrument), Large Synoptic Survey Tele-
scope, LSST (Abell et al. 2009), and WFIRST-AFTA (Spergel
et al. 2013). In order to do this, halo/sub-halo merger trees from
finely-grained output snapshots will be used to generate galaxy
catalogs using the methods described above. The mass reso-
lution has been chosen to enable the construction of catalogs
that can reach useful magnitude limits as set by the survey re-
quirements. Future exascale supercomputers – available on a
timescale when LSST and WFIRST will have turned on – will
provide sufficient computational power to carry out simulations
at similar or better mass resolution in larger volumes, including
subgrid modeling of a host of ‘gastrophysical’ effects.

The purpose of this paper is to describe the Q Continuum
run, including helpful details on how Titan’s accelerators were
used, and to present a first set of validation and scientific results.
Several detailed analyses of the simulation outputs are currently
underway and will appear elsewhere. The paper is organized

2https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide
3http://www.darkenergysurvey.org/
4http://desi.lbl.gov/

Lbox~2 Gpc; Mptcl ~ 10^10

800 Mpc adiabatic hydro 
currently running at z < 1



Program is Well Underway

1. Modeling: coarse-grained model that is flexible, efficient, predictive
2. Modeling: traditional SAMs and hydro sims are critical to science validation
3. Observations: ~DESI-volume spec sample that is color-complete (ok if NOT representative!)
4. Simulations: ~Gpc adiabatic hydro suite resolving ~10**10Msun halos
5. Simulations: ~3 Gpc DM suite resolving ~10**10Msun halos

Program does not require 
“solving” galaxy formation

What is needed scientifically?

What resources do we need to accomplish this?
1. Stable R&D funding: modeling effort is long-term and cross-cutting
2. Stable R&D funding: truly collaborative cross-WG analysis requires serious software engineering
3. Stable R&D funding: simulation campaign cannot be piecemeal, requires systematic FTE(s)


