Tri-Agency Effort Regarding Joint Pixel Processing of LSST, WFIRST, and Euclid

Will Dawson (LLNL) and Peter Melchior (Princeton)

Tri-Agency Group Task Overview

Combining surveys at catalog level *is* powerful for cosmology

Key question: Do we need pixel-level analysis and, if so, why?

NASA, NSF, DoE formed group to investigate and make recommendations

Tri-Agency Group Task Overview

Phase I (previous effort): "Multi-Survey Processing: Science Data Handling" report submitted to DOE, NASA, and NSF on 2016 February 16.

Phase II (current effort):

Scoping activities including requirements definition, improved scoping of algorithms, and design and architecture work.

March 2019 final report due

Phase 3 (future effort): Developing Software and Systems

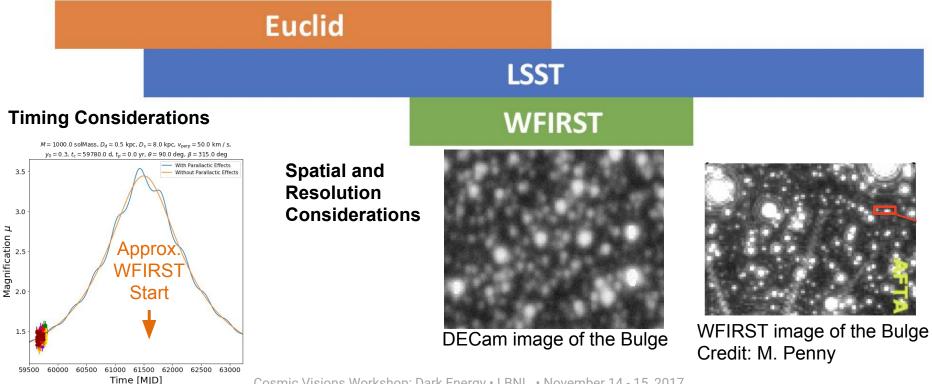
Approx. start by Sep. 2019 to allow 3 year development for LSST & Euclid start

3 Primary Efforts

- a) Developing requirements for joint processing
- b) Scoping effort required for developing and optimizing algorithms
- c) Designing and optimizing computing architecture

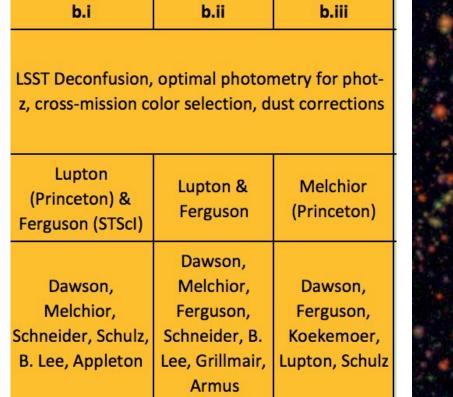
Task	a.i	a.ii	a.iii	a.iv	b.i	b.ii	b.iii	c.i	c.ii	c.iii	c.iv	c.v
Topics	Best phot-z for 3D WL, Breaking z- degeneracies	astronomy/SN	System, Stellar	Microlensing, time baselines for SSOs	LSST Deconfusion, optimal photometry for phot- z, cross-mission color selection, dust corrections		Infrastructure networking hardware interface					
Lead(s)	Newman (Upitt.)	Chary (IPAC)	Paladini (IPAC)	Helou (IPAC), Dawson (LLNL)	Lupton (Princeton) & Ferguson (STScl)	Lupton & Ferguson	Melchior (Princeton)	Dawson & A. Smith (STScl)	Dawson & A. Smith	Rusholme (IPAC)	Appleton (IPAC)	Teplitz (IPAC)
Members	Momcheva, Ferguson, Schneider, Prakash, Chary, Capak	Ferguson, Juric, Momcheva, Prakash, Capak, Armus, Wood-vasey	Kirkpatrick,	van der Marel, Carey, Grillmair	Dawson, Melchior, Schneider, Schulz, B. Lee, Appleton		Dawson, Ferguson, Koekemoer, Lupton, Schulz	Schneider, Fox, Groom, Ebert	Fox, Flynn, Ebert	Smith, Fox, Groom, Berriman	Smith, Fox, Wachter, B. Lee, Rusholme, Berriman	Smith, Fox, Wachter, Groom, Rusholme, Berriman

Developing Requirements


Task a.i		a.ii	a.iii	a.iv	
Topics	Best phot-z for 3D WL, Breaking z- degeneracies	Time domain astronomy/SN /AGN transients/rapi d response	Galactic, Solar System, Stellar Streams, Reionization	Microlensing, time baselines for SSOs	
Lead(s) Newman (Upitt.)		Chary (IPAC)	Paladini (IPAC)	Helou (IPAC), Dawson (LLNL)	
 Momcheva, Ferguson, Members Schneider, Prakash, Chary, Capak		Ferguson, Juric, Momcheva, Prakash, Capak, Armus, Wood-vasey	Ferguson, Momcheva, Wachter, Kirkpatrick, Chary, Grillmair	van der Marel, Carey, Grillmair	IV

Fully Characterized, most accurate solutions Rapid, agile exploration of alternative hypotheses Use cases and science/data requirements to meet needs of broader community

Implications of various timelines of data acquisition in different surveys


The Microlensing Science Case

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

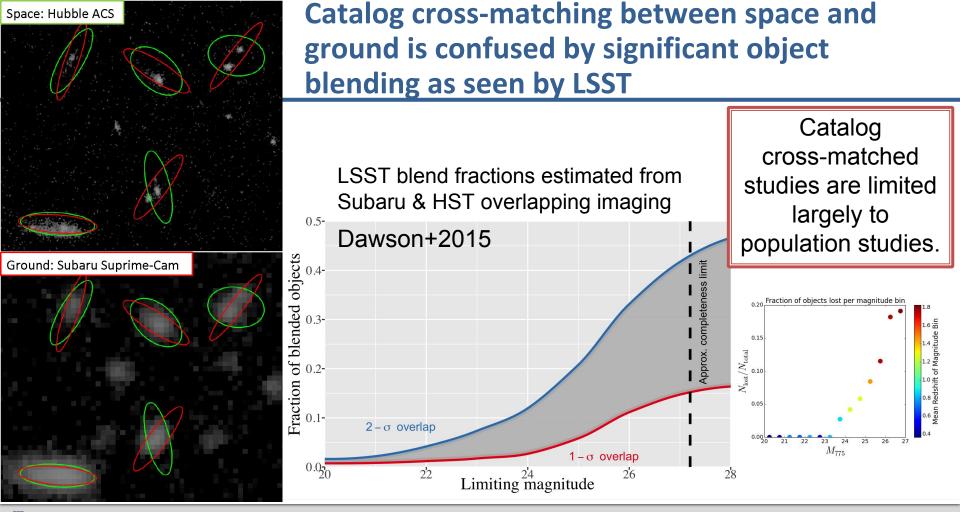
Algorithmic Challenges

HSC 5-band, comparable to LSST

Algorithmic Challenges

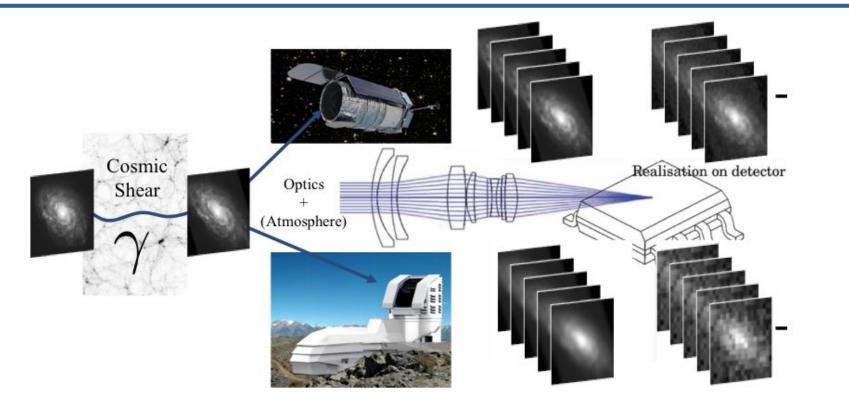
b.i	b.ii	b.iii	

LSST Deconfusion, optimal photometry for photz, cross-mission color selection, dust corrections

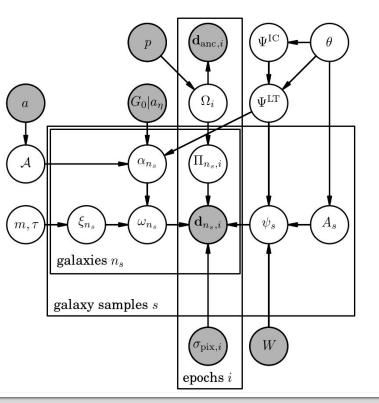

Lupton (Princeton) & Ferguson (STScI)	Lupton & Ferguson	Melchior (Princeton)	
Dawson, Melchior, Schneider, Schulz, B. Lee, Appleton	Dawson, Melchior, Ferguson, Schneider, B. Lee, Grillmair, Armus	Dawson, Ferguson, Koekemoer, Lupton, Schulz	

Association of pixels to objects ambiguous

Catalog-level combinations inferior

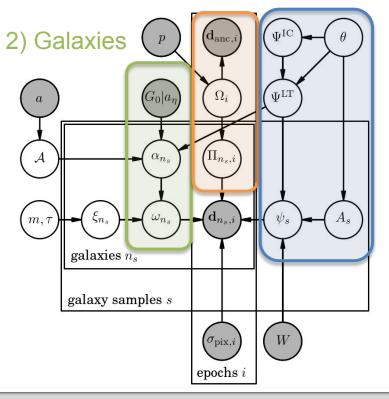

- for blended objects
 - for transient/moving objects
- compared to forced/matched photometry

Challenge: accounting & **utilizing** different wavelengths, resolutions, cadences


To go beyond population statistics we really need to go back to the pixels.

The complete statistical model for cosmic shear

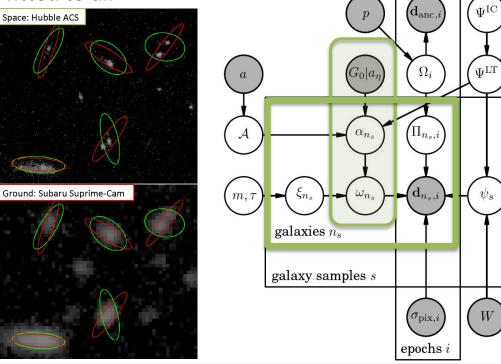
Parameter Description θ Cosmological parameters **WIC** Initial conditons for the 3D gravitational potential WLT. Late-time 3D gravitational potential 2D lens potential (given source photo-z bin s) \Us As Parameters for the line-of-sight source distribution $\Pi_{n_o,i}$ PSF for galaxy n_s observed in epoch *i* Ω_i Observing conditions in epoch iGalaxy model parameters; $n_s = 1, \ldots, n_{\text{gal},s}$ $\{\omega_{n_s}\}$ Parameters for the distribution of $\{\omega_{n_s}\}$ $\{\alpha_{n_s}\}$ $\{\xi_{n_o}\}$ Scaling parameters for $\{\omega_{n_s}\}$ Hyperprior parameters for $\{\xi_{n_s}\}$ m, τ Hyperparameter for $\{\alpha_{n_s}\}$ classifications A Pixel data for galaxies $n_s = 1, \ldots, n_{gal,s}$ in epoch *i* $\{\mathbf{d}_{n_s,i}\}$ Prior specification for $\{\alpha_{n_s}\}$ $G_0 | a_n$ Source sample (e.g., photo-z bin) S W Survey window function Ancillary data for PSF in epoch i $\mathbf{d}_{\mathrm{anc},i}$ Prior params. for observing conditions p Prior params. for \mathcal{A} a Pixel noise r.m.s. in epoch i $\sigma_{\mathrm{pix},i}$ Model selection assumptions


arXiv:1411.2608

The complete statistical model for cosmic shear

arXiv:1411.2608

1) PSFs 3) Cosmology

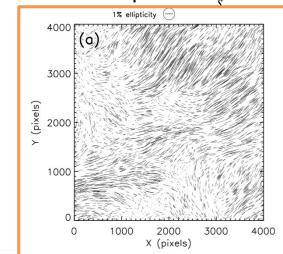

Parameter Description θ Cosmological parameters **WIC** Initial conditons for the 3D gravitational potential WLT. Late-time 3D gravitational potential 2D lens potential (given source photo-z bin s) Us. As Parameters for the line-of-sight source distribution $\Pi_{n_s,i}$ PSF for galaxy n_s observed in epoch *i* Ω_i Observing conditions in epoch iGalaxy model parameters; $n_s = 1, \ldots, n_{\text{gal},s}$ $\{\omega_{n_s}\}$ Parameters for the distribution of $\{\omega_{n_s}\}$ $\{\alpha_n\}$ $\{\xi_{n_o}\}$ Scaling parameters for $\{\omega_{n_s}\}$ Hyperprior parameters for $\{\xi_{n_s}\}$ m, τ Hyperparameter for $\{\alpha_{n_s}\}$ classifications A Pixel data for galaxies $n_s = 1, \ldots, n_{gal,s}$ in epoch *i* $\{\mathbf{d}_{n_s,i}\}$ Prior specification for $\{\alpha_{n_s}\}$ $G_0 | a_n$ Source sample (e.g., photo-z bin) S W Survey window function Ancillary data for PSF in epoch i $\mathbf{d}_{\mathrm{anc},i}$ Prior params. for observing conditions p Prior params. for \mathcal{A} a Pixel noise r.m.s. in epoch i $\sigma_{\mathrm{pix},i}$ Model selection assumptions

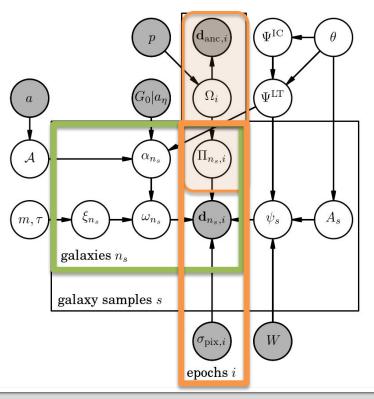
Naïve approach is intractable

Galaxy models be joint fitted to all 1. Space: Hubble ACS available epochs i

θ

 A_s

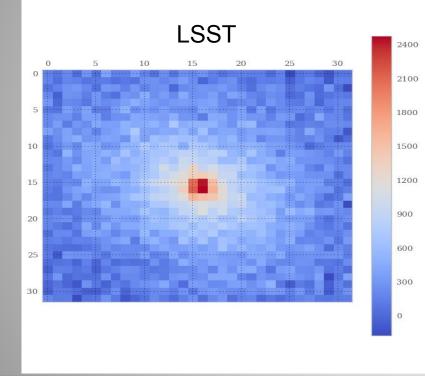

 Ψ^{LT}

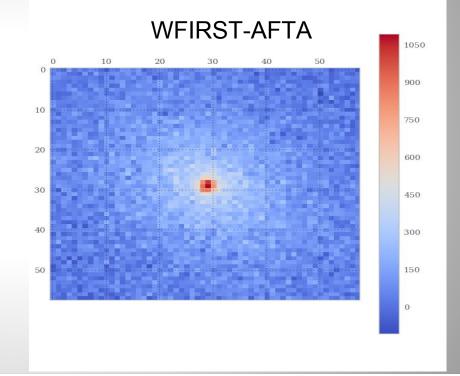

 ψ_s

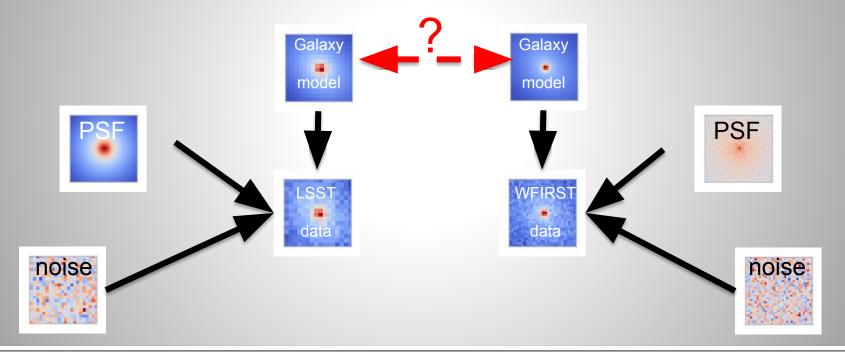
W

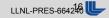
Naïve approach is intractable

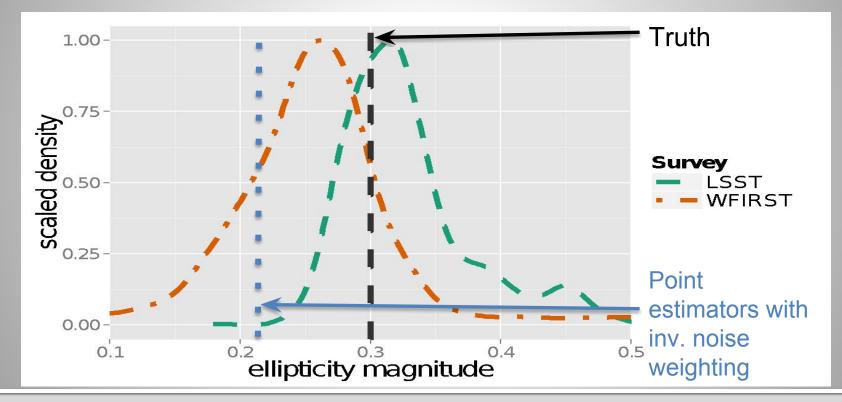
- 1. Galaxy models be joint fitted to all available epochs *i*
- 2. PSF models must be joint fitted to all galaxies in an exposure n_s



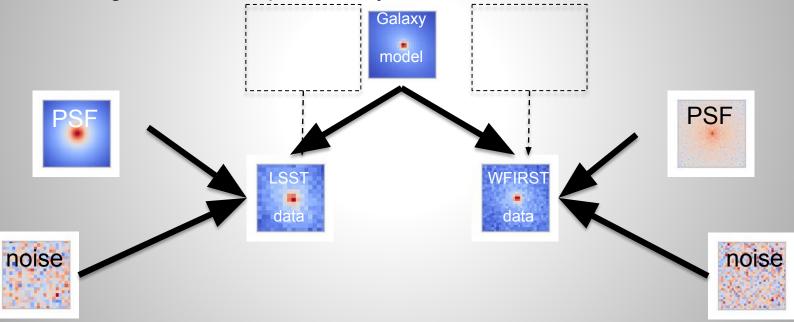




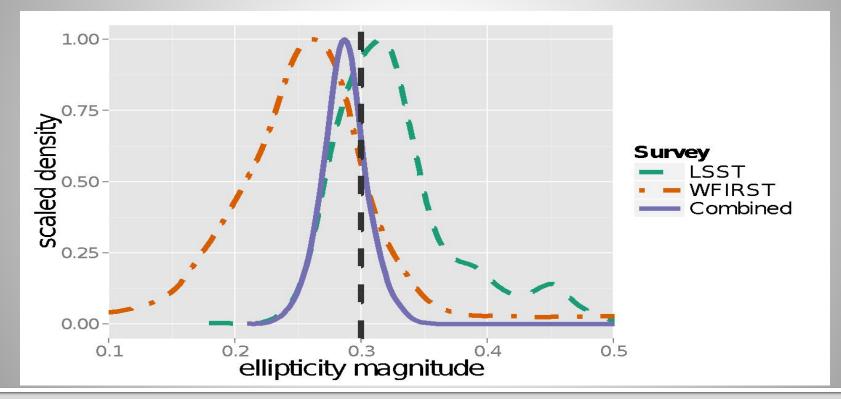

How do ellipticity measurements compare for an isolated, high-SNR galaxy?

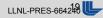


Measuring galaxy ellipticity (and other properties) from different surveys

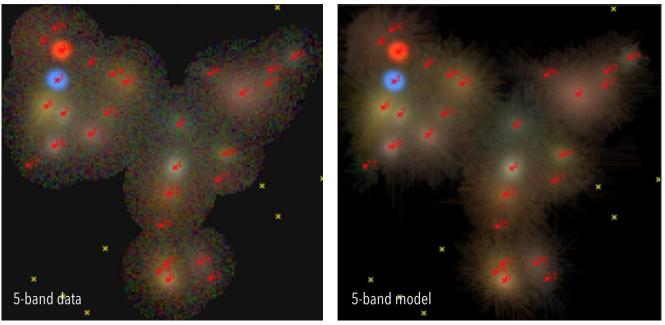


Measuring galaxy ellipticity (and other properties) from different surveys


Measuring galaxy ellipticity (and other properties) from combined survey data


Analyze pixels from both surveys assuming same galaxy model. Analogous to forced photometry.

Measuring galaxy ellipticity (and other properties) from combined survey data



Algorithmic Challenges: Deblending

LSST & Euclid/WFIRST: resolution critical for detection and overlap regions

Multi-band coverage: utilizes color variation between components

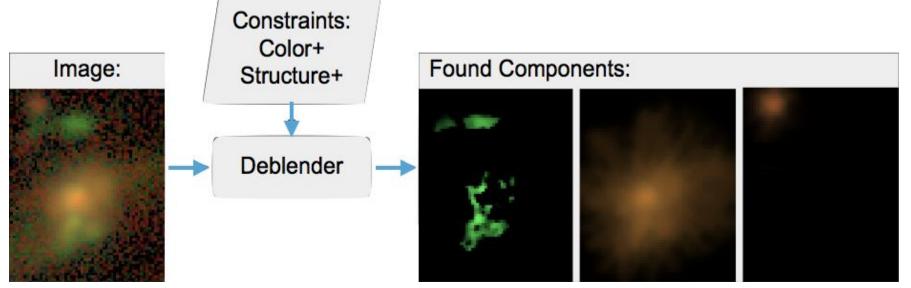
Melchior+ in prep.

Algorithmic Challenges: Deblending

Component separation by modeling spectrum \otimes shape

Minimizing $||Y - AS||_2^2$ under (non-differentiable) constraints (arXiv:1708.09066)

SCARLET: Fast, flexible, extendable, open source (Melchior+, in prep.)


For LSST & Euclid & WFIRST:

- PSF-matched, forced photometry across all bands
- Multiple components per galaxy possible
- Can deal with transients if told

Algorithmic Challenges: Detection

Resolution vs Sensitivity vs Variability

Solution: Detection in multi-band, multi-resolution data frames

Melchior+ in prep.

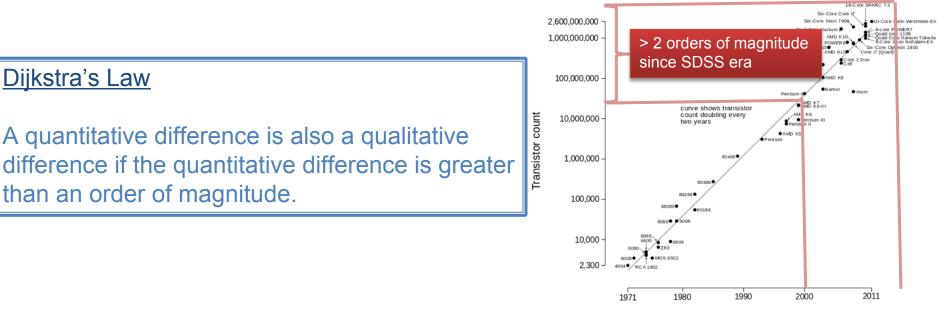
Algorithmic Challenges: Data compression

LSST has ~200 of exposures in each band, a lot more than Euclid, WFIRST

Which tasks can be done on coadds (what do I mean by "coadd")?

- Detection for anything that isn't moving
- Photometry for anything that isn't variable
- Shapes?

Collapsing the time axis


- sufficient for many users
- allows for self-calibration (e.g. Balrog, metacalibration),
 - allows more complex algorithms to be run

Defining Architecture

c.i	c.ii	c.iii	c.iv	c.v	
	Infrastructure, r	networking, hard	lware, interface		
Dawson & A. Smith (STScl)	Dawson & A. Smith	Rusholme (IPAC)	Appleton (IPAC)	Teplitz (IPAC)	
Schneider, Fox, Groom, Ebert	Fox, Flynn, Ebert	Smith, Fox, Groom, Berriman	Smith, Fox, Wachter, B. Lee, Rusholme, Berriman	Smith, Fox, Wachter, Groom, Rusholme, Berriman	

- Point design of computing architecture for most accurate solutions
- . Point design of computing architecture for exploration of alternative hypotheses
- . Optimized design of computing architecture
- Architecture for use by broader community of users/science applications
- Definition of science/data services to meet needs of broader community

We won't just have more data with 'Stage IV' surveys. - We're in an era with qualitatively new computing capabilities

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Figure credit: Wikipedia

Qualitative changes in computing enable new scientific methods

"...predictive simulation has brought together theory and experiment in such a compelling way that it's fundamentally extended the scientific method for the first time since Galileo Galilei invented the telescope in 1609..."

- Mark Seager, CTO for the HPC Ecosystem at Intel

(interview in Inside HPC on June 6, 2016)

Data + Compute convergence in cosmology - DOE ASCR initiative, April 2016

- We're facing **systematics-limited** measurements
 - End-to-end simulations of the experiment are the best approach to improve accuracy & precision
 - Ties data and simulation more intricately than in past cosmology pipelines
- Image and catalog summary statistics are no longer good enough to meet next generation science requirements
 - Probabilistic hierarchical models and related machine-learning approaches show promise but are much more computationally intensive
 - Potential changes to the traditional 'facility' / 'user' separate analysis stages

Removing the line between 'analysis' and 'simulation'.

How will this effort enhance our current knowledge of dark energy? In overlap area(s)

- Systematics control (important since systematics limited)
- Improved detection catalog
- Robust photometry for LSST at full-depth
- Cleaner photo-z training samples

Outside of overlap

Priors/calibrations for detection completeness, photo-z/shape contaminations

Recent review

Rhodes+2017 "Scientific Synergy Between LSST And Euclid" Cosmic Visions Workshop: Dark Energy • LBNL • November 14 - 15, 2017

How does the idea complement other efforts?

Unclear which other efforts qualify

TBD, key aspect of Tri-Agency Group report (due 2019)

Timeline

Survey starts: LSST 2022, Euclid 2021+, WFIRST 2025+

LSST 1-year depth well matched to Euclid, but wide-first vs deep-first

Final overlap 7000 sq. deg (or more with LSST extensions in North or South)

LSST 10-year depth well matched to WFIRST HLS, overlap complete

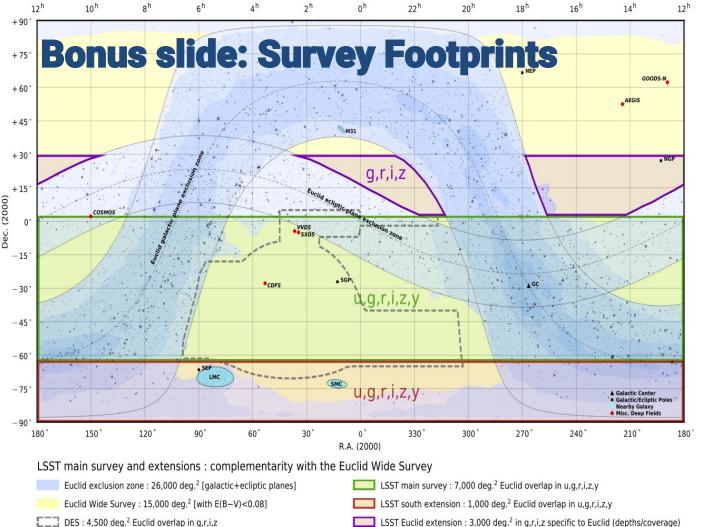
	u	g	r	i	z	Note	
LSST	23.7	24.9	24.4	24.0	23.5	Depth reached per single visit	
Euclid	25.4	25.6	25.3	25.3	24.9	Average requirement for ground based complement	
LSST visits	23	4	5	11	13	Number of visits to reach the $Euclid$ depths	
LSST exp. (mn)	11.5	2	2.5	5.5	6.5	Total integration needed (open shutter time)	
LSST time (mn)	15	2.6	3.3	7.2	8.5	Total budget (integration plus overheads)	
\mapsto We quote the total magnitude for a point source at 5- σ with a PSF fitting photometry							

Rhodes+ 2017

Key Technical and Logistical Obstacles

Technical

R&D needed for forecasts, algorithmic, and computing


Logistical

Data formats/procedures for survey-specific processing

Data sharing policies of three surveys (projects and science users)

Big Plus

Tri-Agency Group represents/coordinates shareholders from every survey

Rhodes+ 2017