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There is much to be gained if DOE can support a project effort that fills the gaps to make
it possible to do the science that requires LSST + WFIRST:

1.

WEFIRST IFC galaxy spectroscopy to calibrate the photo-z’s in parts of parameter
space that are difficult/impossible from the ground (see previous discussion).

. WFIRST WFC galaxy NIR photometry to build photo-z’s, presumably by joint-pixel

processing (see next discussion).

. LSST cadenced SN discovery that can be followed with WFIRST WFC + IFC to

provide NIR imaging and spectrophotometry data unavailable from the ground (see
last discussion tomorrow morning on scheduling synergy).

WEFIRST IFC SN spectrophotometry of ~2000 LSST SNe to train the photometry
classifiers.

. WFIRST IFC and WEFC triggered follow-up of particular LSST transients (see first

discussions tomorrow morning).

All of these require much planning and design, then pipeline building, execution,
reduction, and analysis. Currently, not either DOE or NASA ownership.
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Comparison of WFIRST and Euclid lensing sample

Analysis based on CANDELS (HST) catalog
e Converted to LSST + WFIRST colors
* Nominal WFIRST shape cut
* 31,883 total sources

Full WFIRST lensing sample in blue+green,
WFIRST faint sample (missed in Euclid

sample) in green

Here the “Euclid sample” is defined to be
RIZ<25

* 0.5 mag deeper than nominal Euclid
* Depth being targeted for C3R2 spectroscopy

WFIRST faint sample (6375 sources, ~20% of
total) has higher mean redshift than full
WEFIRST lensing sample

* Not a surprise

Overall redshift range is similar
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Comparison of WFIRST and Euclid lensing sample
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B 31883WFIRST Lensing Sample
Significant number of galaxes not n = 35t
* 20% of WFIRST sample have RIZ>25 10}
* These will be hard to get spectra for
from the ground 08
* What fraction don’t have colors in # 06
the C3R2 sample? "
 Complete Calibration of the Color- .
Redshift Relation (C3R2, P. Capak 04}
and D. Stern, et al.), aims at taking

spectra of ~10k galaxies to 02t
calibrate photo-z using the Keck,

and also Magellan, VLT and the
GCT. 00

* Al collected ~5k spectra and will

last about 1.5 more year. WFIRST - H (ABmag)
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LSST-WFIRST photo-z calibration
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Figure 3: Predictions of the fraction of LSST weak lensing sample objects that would yield a secure (multiple-confirmed-feature)
spectroscopic redshift, based either on 1440-second exposure time with WFIRST (colored regions) or 10 nights’ open-shutter-
time spectroscopy with the Subaru/PES spectrograph (black curve) WFIRST 1FU spectroscopy would provide training redshifts for
objects at higher z than are easily accessible from the ground, particularly if read noise per pixel is small (the colored regions
indicate a range of feasible scenarios). Longer exposure times (e.g., in supernova fields or by optimized dithering strategies) could
enhance the success rate further.



LSST’s SN program
starts out photometry-based
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But when the filters don’t
match perfectly across
redshift, this approach is
accurate only to the
extent that the spectral
template family captures
the distribution of SN la
behavior — at both low
and high redshift.



Average K-correction bias
from a single-parameter spectral time series
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Dust Systematic: Spectral indicator distinguishes
dust reddening from intrinsic SN color

After removing 15 and 2"¢ components |
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Flux + offset

Flux + offset

Twins study from SN Factory spectral time-series
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NIR Standardization

A route to better
standardization:
Add J and H band.

(J band is not as big T 110 BVRI(JH) SN la (CfA3+PTEL+lit) * Optical
. 31 I e Optical+NIR
an improvement as H band.) .p i : — p— . -

CV Pred Err (All, cz > 3000 km/s) = 0.15 mag (0.139 + 0.011 intr.)

Difference
o

CV Pred Err (Opt only & cz > 3000 km/s) = 0.16 mag10.149 + 0.014 intr.)
CV Pred Err (Opt+NIR & cz > 3000 km/s) = 0.11 mag (0.101 + 0.019 intr.)
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TWi n S N e Nearby SN Factory

Fakhouri, Boone, et al.
(ApJ, 2015)
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LSST’s SN program
starts out photometry-based







SN photometry uncertainty from IFC while subtracting host gal. light. David Rubin

noise-free noise-free data with noise residual
data: 0.8um residual

l RMS: 0.3%!

(single
wavelength
shown for
clarity)

The final noise is dominated by sky and read noise,
not subtraction error



WEFIRST
Spectrophotometry

Two epochs near maximum
with increasing S/N.

Reference epoch(s) after SN
has faded.
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Flux + offset

Flux + offset

Twins study from SN Factory spectral time-series
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Spectral feature measurements and twinning using IFC, as fn. of S/N.

Simulated twins dispersion with WFIRST
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This is a mutual LSST-WFIRST win-win:

Current SN program concepts with and without LSST discoveries at z < 0.8.

Program Concept Number of SNe

0.1--0.4 | 0.4--0.8 | 0.8--1.7 | Without Rv | With the
drift syst. systematics

2-band WFIRST imaging discovery and
lightcurves. Spectrophotometric time series.

LSST & WFIRST imaging discovery and
lightcurves. Spectrophotometric time series. 591 1,712 909 460 360

Note: These numbers are based on full simulations with more optimal exposure time/
redshift distributions, correlation-accounted systematics, host-galaxy light, and vetted
ETCs, not the straw-man SDT notional program.
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There is much to be gained if DOE can support a project effort that fills the gaps to make
it possible to do the science that requires LSST + WFIRST:

1.

WEFIRST IFC galaxy spectroscopy to calibrate the photo-z’s in parts of parameter
space that are difficult/impossible from the ground (see previous discussion).

. WFIRST WFC galaxy NIR photometry to build photo-z’s, presumably by joint-pixel

processing (see next discussion).

. LSST cadenced SN discovery that can be followed with WFIRST WFC + IFC to

provide NIR imaging and spectrophotometry data unavailable from the ground (see
last discussion tomorrow morning on scheduling synergy).

WEFIRST IFC SN spectrophotometry of ~2000 LSST SNe to train the photometry
classifiers.

. WFIRST IFC and WEFC triggered follow-up of particular LSST transients (see first

discussions tomorrow morning).

All of these require much planning and design, then pipeline building, execution,
reduction, and analysis. Currently, not either DOE or NASA ownership.



Distance measurements improve
as the number of nearby (z < 0.1) SNe
is made comparable to the number of distant SNe

Projected WFIRST FoM as a function of number of low-z SNe la
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