Spectroscopic Support for LSST Science: A Dark Energy Perspective

Jeff Newman, U. Pittsburgh/PITT PACC (with contributions from Josh Frieman, FNAL)

- 2015: NSF-commissioned NRC report *A Strategy to Optimize the US Optical and Infrared System in the Era of LSST* (Elmegreen et al.) recommended wide-field, highly multiplexed spectroscopy on an intermediate-to-large aperture telescope in the southern hemisphere.
- 2016: DOE-commissioned *Cosmic Visions Dark Energy* report (Dodelson et al.) identified a Southern Spectroscopic Survey facility as one way to enhance and go beyond LSST science in the next decade
- 2016: NSF-requested NOAO-Kavli-LSST community study *Maximizing Science in the Era of LSST* (Najita, Willman et al.) recommended wide-field, highly multiplexed optical spectroscopy on an 8m+ telescope, preferably in the Southern hemisphere, to address a wide variety of science over the next decade+.

- Close coupling of photometric and WF spectroscopic surveys pays enormous scientific dividends: SDSS, DES & OzDES, HSC & PFS, DeCALS+DES & DESI,...
 - LSST & ???
- LSST is a *deep, wide, fast* survey. Spectroscopic resources for *deep* (e.g., ELTs) and *fast* (e.g., Gemini-S Octocam) spectroscopic follow-up are being established, but not wide.
- In general, for efficient (i.e., time-limited) multi-object surveys, we need spectroscopic aperture ≥ photometric aperture to have adequate numbers of photons to disperse.
- We need a Large-Area Spectroscopic Survey Instrument: A LASSI

Improved photometric redshift training would greatly increase the science gains from LSST

- All LSST probes of dark energy will rely on measuring observables as a function of photometric redshift
- Better training of algorithms via spectroscopic redshifts shrinks photo-z errors and improves dark energy constraints, especially for BAO and clusters

LSST system-limited photo-z accuracy is ~0.02-0.025(1+z) (vs.
 0.05(1+z) in similarly deep samples today): difference is knowledge of templates / intrinsic galaxy spectra

• Perfect training set would increase LSST DETF FoM by at least 40%

Basic requirements for LSST photometric redshift training

- >30,000 galaxies down to LSST weak lensing limiting magnitude (*i*~25.3)
- 15 fields at least 20 arcmin diameter widely dispersed over LSST sky to allow sample/cosmic variance & systematics to be mitigated & quantified
- Long exposure times needed to ensure >75% redshift success rates: 100 hours at Keck to achieve DEEP2-like S/N at *i*=25.3
- This would also be a great survey for galaxy evolution, + WFIRST photo-z training needs overlap substantially: could be an interagency project

Newman et al. 2015

- High multiplexing
 - Required to get large numbers of spectra
- Coverage of full ground-based spectral window
 - Minimum: 0.37-1 micron, 0.35-1.3 microns preferred
- Significant resolution (R= $\lambda/\Delta\lambda$ >~5000) at red end
 - Allows secure redshifts from [OII] 3727 Å line at z>1
- Field diameters > ~20 arcmin
 - >1 degree preferred
- Large telescope aperture
 - Needed to go faint in reasonable time
 - 4-6m (Cosmic Visions/LASSI) vs. ~8m (Kavli)

Other dark energy drivers identified in the Kavli report:

- Informing and testing models of intrinsic alignments between physically-nearby galaxies: a major potential weak lensing systematic (requires modest-precision redshifts, ideally over ~40 h⁻¹ Mpc comoving ~= 1 deg scales)
- Characterizing large-scale structure (and hence foreground shear) for strong lens systems
- Informing and testing methods of modifying photo-z priors to account for clusters along a given line of sight
- Tests of modified gravity theories using cluster infall velocities
- Tests of dark matter theories using kinematics of galaxies in postmerger clusters (like the Bullet Cluster)
- Testing models of blending effects on photometric redshifts
- Redshifts for SN Ia hosts in LSST deep drilling fields

Summary of (some!) potential instruments

Telescope / Instrument	$egin{array}{c} { m Collecting Area}\ { m (m^2)} \end{array}$	Field area (arcmin²)	Multiplex	Limiting factor
Keck / DEIMOS	76	54.25	150	Multiplexing
VLT / MOONS	58	500	500	Multiplexing
Subaru / PFS	53	4800	2400	# of fields
Mayall 4m / DESI	11.4	25500	5000	# of fields
WHT / WEAVE	13	11300	1000	Multiplexing
VISTA / 4MOST	10.7	14400	1400	Multiplexing
GMT /MANIFEST+GMACS	368	314	420-760	Multiplexing
TMT / WFOS	655	40	100	Multiplexing
E-ELT / MOSAIC	978	39-46	160-240	Multiplexing
Keck / FOBOS	76	314	500	Multiplexing
MSE	98	6360	3200	# of fields
Magellan / MAPS	32	6360	5000	# of fields
TMT/WFOS-fiber pess	655	113	1000	Field of view
TMT/WFOS-fiber opt.	655	201	2000	Field of view

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments

Time required for each instrument

Telescope / Instrument	Total time(y), DES / 75% complete	Total time(y), LSST / 75% complete	Total time(y), DES / 90% complete	Total time(y), LSST / 90% complete
Keck / DEIMOS	0.51	10.2	3.2	64
VLT / MOONS	0.20	4.0	1.3	25
Subaru / PFS	0.05	1.1	0.34	6.9
Mayall 4m / DESI	0.26	5.1	1.6	32
WHT / WEAVE	0.45	9.0	2.8	56
VISTA / 4MOST	0.39	7.8	2.4	48
GMT/MANIFEST+GMACS	0.02 - 0.04	0.42 - 0.75	0.13 - 0.24	2.6 - 4.7
TMT / WFOS	0.09	1.8	0.56	11
E-ELT / MOSAIC	0.02 - 0.04	0.50 - 0.74	0.16 - 0.23	3.1 - 4.7
Keck / FOBOS	0.12	2.3	0.72	14
MSE	0.03	0.60	0.19	3.7
Magellan / MAPS	0.09	1.8	0.56	11
TMT/WFOS-fiber pess.	0.01	0.25	0.08	1.55
TMT/WFOS-fiber opt.	0.01	0.14	0.04	0.87

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments

- Photo-z training is a key driver for the need for spectroscopy to complement LSST: greatly enhances LSST cosmology constraints (comparable to a second LSST!)
- Benefits from an LASSI for cosmology extend well beyond photo-z training
- Kavli report identified LASSI as a critical complement to LSST for studies of cosmology, stars, Milky Way structure, local dwarf galaxies, and galaxy evolution
- Photo-z training was only ~13% of the total time needed on a LASSIlike spectrograph, just from Kavli projects: high demand for this!
- Of course, a higher-multiplex BOA on a larger telescope would be even better...
- For more details, see presentations at https://kicp-workshops.uchicago.edu/ FutureSurveys/presentations.php and https://indico.hep.anl.gov/indico/ conferenceOtherViews.py?view=standard&confId=1035

 Many needs for wide - field, highly-multiplexed spectroscopy to exploit LSST...

- Many needs for wide field, highly-multiplexed spectroscopy to exploit LSST...
- LASSI can save the day!

- Many needs for wide field, highly-multiplexed spectroscopy to exploit LSST...
- LASSI can save the day!

Some other ideas for a name for this concept...

- SOLS = Source Of LSST [or Large-Area] Spectroscopy
- SAULS = Survey Apparatus Used for Large Surveys (for those who like Berkeley delis...)
- LASS = Large Area Spectroscopic Source
- ILAS = Instrument for Large Area Spectroscopy
- ISLES = Instrument for Spectroscopic Large Etendue Surveys

- ~\$5-10M: Upgrade DESI in North, or upgrade and move to Blanco telescope in Chile
- ~\$40M+: Implement DESpec on Blanco, keep DESI in North
- ~\$75M+: New instrument for existing or funded 6-10m telescope OR join existing or planned facility (PFS, MSE, GMT/TMT if instruments meet requirements & enough fiber-years etc. are available...)
- ~\$125-150M+: New Magellan clone + instrument, or instrument on upgraded Gemini (but Gemini-S will likely be largely dedicated to LSST transient follow-up...)
- ~\$250M-500M+: New instrument on new 8-11m in the south.
 Probably would require international collaboration.
- DES and DESI were/will be ~10 yrs from conception to survey start; LSST, ~25 yrs. More ambitious projects will be on-sky later.

Improving indirect-detection dark matter searches with LASSI

 Better estimates of astrophysical J factors improve sensitivity of gamma-ray DM searches

Wang, Drlica-Wagner, Li, & Strigari, in prep.

Improving indirect-detection dark matter searches with LASSI

Magnitudes & exposure times are for Reticulum 2 & 6.5m telescope

 Long exposures for many stars per dwarf are needed to reduce J-factor errors: an LASSI can help make this possible.
 Wang, Drli & Strig

Wang, Drlica-Wagner, Li, & Strigari, in prep.

- By mid-2020s, >2 gravitational wave sources per day will be detected, with localizations to ~90 Mpc along the line of sight and ~1 deg² on sky
- In combination with dense galaxy map, can identify over density most likely to host the GW event
- Enables cosmological constraints by comparing standard-siren distances to redshifts
- LASSI would be well-suited to producing such maps at low z

Annis, Soares-Santos, & Brout, in prep.

- Galaxy evolution: survey of ~100,000 galaxies to z=2 to study connection between galaxy properties and environment in LSST deep drilling fields
 - Requires ~1 year of time on a Subaru/PFS-like spectrograph
- Milky Way structure: spectroscopy of ~1,000,000 stars to study the build-up of the Milky Way's stellar halo
 - Requires ~1.5 years of time on a Subaru/PFS-like spectrograph
- Local dwarf galaxies: studies of stellar properties and kinematics
 - Requires >2 years of time on a Subaru/PFS-like spectrograph
- Understanding stars: studies of stellar activity and rotation
 - Requires ~2 years of time on a Subaru/PFS-like spectrograph
- Can also contribute to transient science by targeting LSST transients on spare fibers during other surveys, and supernova cosmology by obtaining redshifts for past photometric SN hosts

Blanco telescope, Chile

- Same telescope used for DES: 4m diameter, currently w/ 3 deg² FOV
 - Successful experience with DOE/ NSF/NOAO partnership
- Clone or move DESI: 5000x multiplexing, ~7 deg² FOV
 - ~few M\$ for move or ~60M\$ for clone
- DESpec: 5000x multiplex, 3 deg² FOV with existing corrector, interchangeable w/ DECam:
 - ~40M\$

- Pros:
 - Largest field of view w/ DESI move or clone
 - Moving DESI cheapest option for an LASSI; mid-2020s possible
- Cons:
 - Small aperture requires long survey times
 - Earthquake safety of DESI corrector?
 - Kavli/NOAO/LSST report will recommend DECam stay on Blanco at minimum 3 years into LSST survey; would delay LASSI deployment unless DESpec option

Magellan telescope, Chile

- Two 6.5 diameter telescopes
- Potential f/3 secondary would match DESI input beam and enable 1.5-2 deg diameter field of view with 3000-6000 positioners
- New secondary would cost ~\$few M million, plus ~\$75M+(?) for instrument
- Magellan institutions with majority of time interested in partnership: successful model with SDSS4/APOGEE-South
 - LASSI instrument could form the basis of a SDSS6 survey; potential public/private partnership

Magellan telescope, Chile

- Pros:
 - Larger collecting area
 - Existing telescope makes earlier schedule possible: mid-2020s?
- Cons:
 - Would prefer even larger aperture, >8m (Kavli/NOAO/LSST)
 - If use an existing Magellan telescope, must navigate politics of Magellan institutions, time access likely limited.
- Build a 3rd Magellan telescope for this? Add \$75M+ and additional construction time.

Gemini telescope, Chile

- 8m telescope, US(NSF)-led international consortium
- Current FOV is small
- With ~\$50M upgrade, could get 1.5 deg FOV, plus ~\$75M instrument: WFMOS redux.
- Pros:
 - Larger collecting area; US-led
- Cons:
 - Total cost >~\$125M
 - Gemini-South planned to have lead role in LSST transient follow-up.
 Probably not available before late 2020s.
- Gemini-North might be more available, but in wrong hemisphere.

- 4m diameter
- Latitude 32N
- Could use (possibly upgraded) DESI instrument from mid-2020s
- Pros:
 - Enables LASSI science without new instrument
- Cons:
 - Northernmost option, can access <<1/2 of LSST area
 - Very large amounts of time required to do LASSI program on 4m
 - Gets worse at the higher airmasses required to reach into LSST footprint from Kitt Peak

Telescopio San Pedro Mártir, Mexico

- Magellan clone, 6.5m diameter
- Latitude 30N
- \$74M projected telescope budget, plus ~\$75M+(?) for instrument
- Pros:
 - Simpler politics than Magellan, enthusiasm of partners to host an LASSI-like instrument
- Cons:
 - Northern hemisphere
 - Smaller than some other options
 - Not yet certain to be built, time access likely limited.

A 55

Subaru (+PFS spectrograph), Hawai'i

- 8m diameter, wide-field telescope
- PFS spectrograph, 2400 fibers over 1.3 deg, under construction, commissioning to be completed 2019
- Pros:
 - Enables LASSI without new instrument
- Cons:
 - Northern hemisphere, but can access majority of LSST footprint
 - Limited time access: must compete with other Japanese priorities and potential time allocations for WFIRST
 - Subaru relatively expensive to build + operate

- 10m diameter, narrower-field telescope
- FOBOS: proposed 500-object spectrograph
- Designed for high efficiency: could have comparable survey speeds to PFS
- Pros:
 - Large telescope aperture
 - Could enable kinematic weak lensing via mini-IFUs
- Cons:
 - Northern hemisphere, but accesses majority of LSST footprint
 - Very limited multiplexing and FOV
 - Limited time available: largest Keck programs to date have been ~100 nights

Mauna Kea Spectroscopic Explorer, Hawai'i

- 11m diameter telescope with 1.5 degree field of view, replacing CFHT
- Designed solely for spectroscopy with an LASSI-like (3200-fiber) instrument
- Pros:
 - Large aperture, wide field, very high survey speed
 - Enthusiastic about collaborating
- Cons:
 - Northern hemisphere, but accesses majority of LSST footprint
 - Not yet funded; timescale?
 - Cost to join: \$50 million (in-kind via instrument construction?)
- Note: similar telescope concepts for South under ESO discussion.

- Strawman: 8m+ telescope with >1.5 degree field of view
- Designed *ab initio* for WF, highly multiplexed spectroscopy
- Pros:
 - Large aperture, wide field, very high survey speed, access, LSST overlap
- Cons:
 - Cost and timescale

- Astronomy community has identified LASSI-like instrument as a priority, but will want to enable non-cosmic science.
- DOE focus is on cosmology only
- LASSI would be relevant to NASA for WFIRST photo-z training
- Private consortia with existing or to-be-built 6-10m telescopes may be interested in partnering for cash or instrument.
- The international community also recognizes and is discussing the potential benefits for such a capability in the LSST era.
 International partnerships possible and may be necessary for larger-scale implementations of LASSI.

• Wide

- DESI-like high-z survey over 16,000 sq. deg. of LSST footprint not covered by DESI (CMB-S4 area is same size -- a cross-correlation survey would be similar)

- ~29M spectra total
- Note: 4MOST will be doing a ~half-DESI-density survey over this area (but no BGS equivalent). Is the extra density/z range worthwhile?

DESI coverage

- Intermediate
 - Survey of all galaxies to i~22.25 over 2700 sq. deg. WFIRST area
 - 42M galaxies total (4.4 per sq. arcmin)
 - 2x DESI exposure time assumed (should yield ~75% redshift completeness, scaling from DEEP2)
 - Dense map of LSS (~9x DESI density)
 - Useful for cross-correlation studies, etc.
 - Could optimize for CMB-S4 rather than WFIRST

• Deep

->30,000 galaxies over 15 fields at least 20 arcmin diameter each down to LSST weak lensing limiting magnitude (*i*~25.3)
- Enables photo-z training for

LSST

- 15 fields to allow sample/ cosmic variance to be mitigated
& quantified

 Long exposure times needed to ensure >75% redshift success rates: 100 hours at Keck to achieve DEEP2-like S/N at *i*=25.3

	Wide	Intermediate	Deep
DESI-South	1.1 years	3.1 years	5.1 years
PFS-South	0.7	1.7	1.1
MSE-South	0.4	0.8	0.6
Magellan/MAPS	0.7	1.2	1.8

- Notes: Normalizations are optimistic, at least for Wide; the real DESI survey (which is 14k sq deg vs 16k for Wide) is more like 3 years of dark time.
- Time estimates assume that all fibers are assigned to targets and that sky subtraction accuracy scales as photon noise.
- Minimum observation time of 5 min (including 2.5 min overheads) assumed.
- Differences in multiplexing, field sizes, and collecting area are all accounted for; instrumental efficiencies are assumed to be identical.

Two spectroscopic needs for photo-z work: training and calibration

 Better training of algorithms using objects with spectroscopic redshift measurements shrinks photo-z errors and improves DE constraints, esp. for BAO and clusters

Training datasets will contribute to calibration of photo-z's.
 ~Perfect training sets can solve calibration needs.

Two spectroscopic needs for photo-z work: training and calibration

- For weak lensing and supernovae, individualobject photo-z's do not need high precision, but the calibration must be accurate - i.e., bias and errors need to be extremely wellunderstood
- 3.0 2.5 σ(w_a) / σ₀(w_a) 2.0 LSST Req't 1.5 1.0 0.0001 0.0010 0.0100 0.1000 $\Delta \sigma_z$ Newman et al. 2013
- uncertainty in bias, $\sigma(\delta_z) = \sigma(\langle z_p z_s \rangle)$, and in scatter, $\sigma(\sigma_z) = \sigma(RMS(z_p z_s))$, must both be $\langle 0.002(1+z)$ for Stage IV surveys

