Lyman-alpha Forest in the Era of 10+m class Spectroscopic Surveys

"Cosmic Visions: Dark Energy" Workshop, LBNL November 13, 2017

Khee-Gan (''K.-G,'') Lee Hubble Fellow, Lawrence Berkeley National Lab

The Lyman-alpha Forest at z>2

Restframe 1215.67Å absorption from neutral HI in intergalactic medium (<u>https://youtu.be/HUo51YFHvls</u>)

Lya Forest Cosmology In BOSS

- Ly α forest provides a unique probe into cosmology at 2<z<4
- 2.5% BAO distance measurement at <z>~2.3 from 3D absorption correlations in BOSS (Bautista+2017). DESI will push this to <1%
- Small-scale power (r <20cMpc) is sensitive to, e.g. sum of neutrino masses: $\sum n_v$, amplitude of structure fluctuations, σ_8 , slope and curvature of primordial matter power spectrum, n_s , $dn_s/dlnk$. Measured only in 1D in BOSS due to sightline sparsity

3D LyaF BAO, Bautista+2017

ID P_F(k), Palanque-Delabrouille+2013

GOING BEYOND QUASARS FOR LY-ALPHA FOREST

COSMOS LYMAN-ALPHA MAPPING AND TOMOGRAPHY OBSERVATIONS (CLAMATO)

- Keck survey on COSMOS field (10hr, +02deg); Lee+2017, arXiv:1710.02894
- Aim to get spectra LBGs+QSOs at z~2-3, to sample 2.1 < z < 2.5 Ly-a forest with sightline separations of ~2.5h-¹Mpc
- First systematic use of galaxies as Lyα forest background sources!
- 2-4hr integrations with 10.3m Keck-I telescope down to g<24.8
- ~60hrs on-sky observations so far
- Ongoing science analyses:
 - Cosmic voids at z~2.3
 - Protocluster characterization
 - Galaxy-absorption cross-correlation

Current Status: 240 sightlines over $27' \times 21'$ area (0.16 deg²), covering 2.05 < z < 2.55 with mean transverse separation $d_{\perp}=2.5h^{-1}Mpc$

30 h⁻¹Mpc

Ly α of background source

Color scheme: **spectrum**, noise vector, spectral template

YouTube: <u>http://tinyurl.com/clamatovid-v2</u> See also <u>http://tinyurl.com/clamato2017-x3d-v1</u>

First Detection Of Cosmic Voids At High-z Krolewski, Lee, et al 2017, arXiv:1710.02612

- Currently most distant-known cosmic voids are at z~0.9 (VIPERS Survey, Hawken+2016)
- Clearly see coherent underdensities in the CLAMATO map at 2.05<z<2.55
- Search for voids in CLAMATO using simple "spherical underdensity" void finder (e.g. Stark, Font-Ribera, White, Lee, 2015): 339 voids with r>2Mpc/h and 48 with r>5Mpc/h
- Voids identified in the tomographic map are also devoid of galaxies with spec-z's in the same volume $\rightarrow 5.9\sigma$ underdense compared to random

A forming supercluster at z=2.51?

- The protoclusters at z=2.44, z=2.48 and z=2.51 are <100 cMpc from each other.
- CLAMATO is resolving real filamentary sub-structure at z~2.5!

Studying The High-z Cosmic Web With IGM Tomography

- Lee & White 2016, ApJ, 817,160
- Krolewski, Lee, Lukic & White 2017, ApJ, 837,31
- Zel'dovich-like approach: eigenvalue analysis of the gravitational tidal tensor $d^2\Phi/dx_idx_j$
- tl;dr: IGM tomography can recover the eigenvectors of the cosmic web with sufficient fidelity to constrain intrinsic alignments from galaxies

Dark matter cosmic web

CLAMATO cosmic web

Krolewski et al, 2017a

Mode-Counting in the Ly-alpha Forest

- CLAMATO at 2.0<z<2.6 yields effective comoving spatial resolution of 5Mpc/h → k_{max} ~ 0.7h/Mpc
- $I deg^2$ over 2.0<z<2.6 covers 2×10⁶ h⁻³Mpc³ → 16k modes/deg²
- I0k deg² CLAMATO-like survey over 2<z<3 would yield 200+M modes, going to non-linear (c.f. ~I0-I5M modes in DESI and LSST)
- ~25M background galaxies at 2.3<z<3.5
 - + Cross-correlation/multi-tracer techniques between b~2 galaxies + $Ly\alpha$ forest
 - 2x improvement in curvature measurements c.f. Pat McDonald) from galaxies alone

SSSI/BOA Survey Considerations

- S/N~I-2 per Å required at the faint limit (2-4hr integrations on g < 24.8 with Keck)
- CLAMATO obtained N=1500/deg^2 projected sightlines at 2.0<z<2.5 (d_perp=2.4Mpc/h)
 - $\times 2.5$ to get coverage from 2.0 < z < 3.2
 - × 1.5 for target selection overhead (assuming broadband color selection)
 - → N=5000 per sq deg available for IGM tomography targets requiring 2-4hr integrations on 10m mirror (downscaling reduces sightline sampling by √N)
- 6.5m aperture will make this very slow (c.f. 12hr integrations on 15 deg² tomography survey with 8.2m Subaru PFS)
- On BOA with ~30-50k fibers per sq deg, can be integrated with galaxy survey using multi-pass strategy like DESI

Conclusions

- Lyα forest surveys with 10m-class facilities allow full 3D mapping of IGM down to non-linear scales (<5Mpc/h)
- Fully demonstrated on Keck over < Isq deg area. Upcoming Subaru-PFS survey (2020-2025) over 15 sq deg @ 2/3 the target density
- Instrumentation perspective:
 - Prefer large-aperture: 6.5m strongly disfavored
 - Blue sensitivity needed, so prefer shorter fiber runs → Cassegrain-mounted focal plane
- Theoretical work TBD (manpower limited...<10 people in entire business!):
 - Large number of linear+non-linear modes (~200M over 10k deg^2), but need cosmological forecasts
 - Systematics in Ly α forest: continuum fitting, inhomogeneous UV background
 - Hydro simulation grids currently needed for detailed analysis. Currently at O(100Mpc/h) will Moore's Law catch up?