Expanding the Adaptive Optics Field of View

Jessica R. Lu UC Berkeley Classic AO has a small field of vew.

Ground Layer Adaptive Optics

Multiples
Guide Stars

Correct Lowest Turbulence

'imaka (scenic view)
pathfinder for wide-field
ground-layer AO

Principal Investigator:
Mark Chun
Project Scientist:
Jessica Lu

Telescope: UH 2.2 m

Funding: NSF-ATI, Mt. Cuba

Foundation

Olivier Lai, Douglas Toomey, Max Service, Fatima Abdhurraman, Christoph Baranec, Dora Fohring

UH IfA, MKIR, Subaru, Gemini, Laval, UH Hilo, UC Berkeley

Maunakea is an ideal location for **ultra** wide-field adaptive optics (UltraWAO).

Other AO

'imaka First Light 4' x 5' Commissioning Camera 'imaka Open Loop

Data set of alternating images with GLAO on/off.

GLAO gets rid of atmospheric and instrumental blurring of the point spread function (PSF).

GLAO improves PSF size and elongation.

AO-corrected: 0.4" in Run 3. Generally: minor FWHM decreases 31%

GLAO improves PSF size and elongation.

AO-corrected: 0.4" in Run 3. Generally: minor FWHM decreases 31%; major, 48%

GLAO improves PSF size and elongation.

- AO-corrected: 0.4" in Run 3. Generally: minor FWHM decreases 31%; major, 48%
- Median elongation (FWHM $_{major}$ /FWHM $_{minor}$) decreases from 1.45 to 1.05

GLAO improves noise equivalent area.

- Defined in King, 1982: $\sigma^2 = \alpha b / \Sigma f_i^2$
- Photometric precision scales with NEA, astrometry with NEA^1/2

GLAO improves both infrared and optical, but improvements decrease at shorter wavelengths.

Figure 13. Wavelength dependence of PSF size is shown here as FWHM for seeing-limited and AO-corrected images for all nights as a function of observation wavelength, with no wavelength calibration applied. The best fit model is shown with solid lines. The lower panel shows the corresponding residual.

GLAO improves PSF stability for long-duration exposures.

Many different conditions over 15 nights.

FWHM projected to $\lambda = 500 \text{ nm}$ Observations mostly at R (~650 nm) and I (~800 nm)

Improved astrometry and sensitivity with GLAO. (preliminary)

Number of Stars Detected

Astrometric Precision

193 stars in open 376 stars in closed

	Open	Closed
Bright	2.4 mas	1.9 mas
Faint	6.9 mas	3.5 mas

'imaka technical objectives

Test FOV vs. AO performance

Test sensitivity gains

Test PSF uniformity and stability

Test astrometric capability

Test GLAO in a range of conditions

Future science with GLAO on larger telescopes on Maunakea.

GLAO at Keck GLAO at TMT

- deep galaxy mapping
- crowded stellar photometry
- crowded stellar astrometry
- sparse field astrometry

Ingredients for GLAO with high sensitivity and sky coverage

Adaptive Secondary Mirror

Wavefront Sensors

UV Laser Guide Stars

Are the science gains worth the cost?

Are the science gains worth the cost? SDSSJ1110+6459 z=2.49

,clumpy structure' visible at 0.2" resolution

http://lbtonews.blogspot.com/2016/03/first-spectroscopic-observations-with.html