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• Greatly increase usage of HPC resources for HEP workloads

– After all, many more compute cycles will be available in HPC than anywhere 

else.

• Can we …

– Provide for large-scale HEP calculations

– Demonstrate good resource utilization 

– Use tools available on HPC systems (we believe this is a practical decision)

• Scalable I/O has been one of the major concerns

What we have been challenged with
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• Big Data explorations (SCD)

– New (to HEP) methods for performing analysis on large datasets

– Began with Spark, moved to python/numpy/pandas/MPI

• HDF for experimental HEP (Fermilab LDRD 2016-010)

– Organizing data for efficient access on HPC systems (HDF)

– Organizing programs for efficient analysis of data with Python/numpy/MPI

• HEP Data Analytics on HPC (SciDAC grant)

– Collaboration between DOE Office of High Energy Physics and Advanced Scientific 

Computing Research (ASCR supports the major US supercomputing facilities)

– Physics analysis on HPC linked to experiments (NOvA, DUNE, ATLAS, CMS)

Efforts have been underway to tackle challenges

7/23/2018 3 J.Kowalkowski – Scalable I/O Workshop



• How ought data be organized and accessed?

– Assuming usual HPC facility with a global parallel file system

– A deeper memory hierarchy than we are used to

• How should the applications be organized?

– Is our current programming model appropriate?

– How do we achieve necessary parallelism?

– What libraries should we be using?

• How will the operating systems and run-time environment affect our computing 

operations and software?

– Are the software build and deployment tools we have in place adequate?

– What if we could analyze an entire dataset all at once?

– Can we benefit from tighter integration of workflow and application?

Questions to be addressed
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• Choose representative problems to solve

– NOvA analysis workflows, LArTPC processing, generator tuning

• Choose toolkits and libraries that could help

– HDF5

– ASCR data services geared towards HPC

– Python with numpy, MPI, and Pandas

– Container technology

– DIY as a solution for data parallelism

• Facilities to be used initially: 

– NERSC Cori (KNL and Haswell)

– ALCF Theta

Plan of attack
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• We aim to greatly reduce the time it takes to process HEP data.

• We need to redesign our workflows and code to take full advantage of 

HPC systems.

– to use well-established parallel programming tools and techniques

– to make sure these tools and techniques are sufficiently easy to use

– We need programs that are adaptable to different “sizes” of jobs (numbers of 

nodes used) without changing the code.

– We want data designed for partitioning across large machines.

• We want to partition data (and processing) by things that are meaningful in 

the problem domain (events, interactions, tracks, wires, . . . ), not according 

to computing model artifacts (e.g. Linux filesystem files).

– parallelism implicit

Guiding principles, requirements, and constraints
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• LArTPC wire storage, access, and processing

• Event selection for neutrino analysis

• Object store for physics data

• Physics generator data access

Experimental contexts for our work
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LArTPC wire storage, access, and processing
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• LArIAT is a LArTPC (Liquid Argon Time Projection Chamber) test beam experiment

• Converted all LArIAT raw data sample to one HDF5 file

– Started with 200K art/ROOT data files

– ~42 TB of digitized waveforms (4.2 TB compressed)

– 15,684,689 events.

– Waveform data from u and v wireplanes (240 wires per plane, 3072 samples per wire)

• Reorganized the data using HDF to be more amenable for parallel processing 

• Processing the entire LArIAT raw data sample

– First step of reconstruction is noise reduction using FFTs

Noise removal from LArIAT waveforms
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Parallelism is entirely implicit, and entirely data parallel. 

Example MPI code: processing many events at one time
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# first and last are calculated by library code, to tell
# this function call what part of the data set it is to
# work on.
adc_data = adcdataset[first:last] # read block of array
adc_floats = adc_data.astype(float)
# view data as an array of wires, rather than as events
adc_floats.shape = (nevts*WIRES_PER_PLANE, SAMPLES_PER_WIRE)
waveforms = transform_wires(adc_floats) # real work done here
# view the data as events again
waveforms.shape(nevts, WIRES_PER_PLANE, SAMPLES_PER_WIRE)



• All the real work is done in the numpy library, implemented in C.

– The library can use multithreading, or vectorization, to get the most performance from the 

hardware.

• The script that launches the application specifies how many processes to use:

– mpirun -np 76800 python process_lariat.py <filename>

– This starts 76800 communicating parallel instances of our program — equivalent to

running 76800 jobs all at once.

Example code: processing many wires
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def transform_wires(wires):
ftrans = numpy.fft.rfft(wires, axis=1)
filtered = THRESHOLDS * ftrans
return numpy.fft.irfft(filtered, axis=1)



Processing speed for full analysis being done
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• Entire LArIAT dataset processed in three minutes (at 1200 nodes)

• Shows perfect scaling



• Read + decompression speed for the whole application

• Nearly perfect strong scaling

Read speed – how does the I/O scale?
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• Different colors correspond to different ranks in the application

• Slower iterations within the application are twice as slow as faster ones (81 iterations 

in whole run)

We should be able to do better …
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Event selection for neutrino analysis
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Traditional solution for oscillation parameter measurement
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• We want to minimize … 

– Reading

– Communication and synchronization between ranks

• We organize the data into a single HDF5 file, containing many different tables

– some tables have one entry per slice

– some have a variable number of entries per slice

• We want to process all data for a given slice in a single rank.

– the slice is NOvA’s “atomic” unit of processing, like a collider event.

– for data that represent per-slice information, this is trivial

– for other data, we need to do some work to ensure each rank has the correct data.

High-level organization of processing
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HPC solution
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Parallel event pre-selection
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• Current situation

– NOvA slice data held in 17K ROOT files across

– ~27 million events are reduced to tens using ROOT macros applying 

physics “cuts”

• New method

– Data prepared for analysis using workflow shown below 

– End state: >50 groups (tables), each with many attributes 
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• Each rank reads its “fair share”

of index info from each table.

– identifies which rank should handle

which event, for most even balance

– identifies range of rows in table that

correspond to each event (all slices)

• Event “ownership” information distributed to all ranks

– this assures no further communication between ranks is needed while evaluating the 

selection criteria on a slice-by-slice basis.

– perfect data parallelism in running all selection code

• Each rank reads only relevant rows of relevant columns from relevant tables

– all relevant data read by some rank

– no rank reads the same data as another

Distributing and reading information
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sel_nuecosrej vtx_elastic

rank 0

rank 1

Index info read by rank 1
Table row read by rank 0
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def kNueSecondAnaContainment(tables):
df = tables['sel_nuecosrej’]
return (df.distallpngtop > 63.0) & \

(df.distallpngbottom > 12.0) & \

(df.distallpngeast > 12.0) & \

(df.distallpngwest > 12.0) & \

(df.distallpngfront > 18.0) & \

(df.distallpngback > 18.0)

def vtxelasticzCut(tables):

df = tables['vtx_elastic']

df['good'] = 

(df.vtxid == 0) & (df.npng3d > 0)

KL = ['run', 'subRun', 'event', 'slice']

return df.groupby(KL)['good'].agg(np.any)

• Selection can be done on multiple columns 

of a table.

• Logical operations are connected by &
operator.

• Data parallelism is totally implicit.

• Returns an array with one logical value per 

slice.

• vtx_elastic table has one entry per vertex;

may be more than 1 per slice.

• groupby combines results for all vertices in 

one slice.

• Returns an array with one logical value per 

slice.
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Example selection code
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• NOvA has taken ownership of our HDF “ntuple” production code

– They will use this in their own future production.

– Especially interested in using for machine learning; many tools work with HDF5 files.

• We will be comparing performance with C++-MPI implementation.

• Integration with larger workflow that is also part of the SciDAC project

– use of changes in event selection criteria to evaluation systematic uncertainties in the 

mixing parameter measurements

– one integrated MPI program, to take best advantage of HPC platform.

Current status
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Object store for physics data
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Goals:

• Manage physics event data from simulation and experiment 

through multiple phases of analysis

• Accelerate access by retaining data in the system 

throughout analysis process

• Reuses components from Mochi ASCR R&D project

Properties:

• Write-once, read-many

• Hierarchical namespace (datasets, runs, subruns)

• C++ API (serialization of C++ objects)

Components:

• Mercury, Argobots, Margo, SDSKV, BAKE, SSG

• New code: C++ event interface

Map data model into stores

HEPnOS: Fast Event-Store for HEP (on HPC)

BAKE SDS-KeyVal

HEP Code

RPC RDMA

PMEM LevelDB

C++
API
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Our first use of HEPnOS
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Event currently 

interacts with 

art/ROOT File

• Make high-volume reconstructed physics object data 

available to analysis workflows

– Use existing art framework and gallery library

– Starting point: Use actual LArSoft Tracks, Hits,and

Associations from ProtoDUNE simulation

• Allow HPC facility services to distribute data at any 

scale, using existing HEP abstractions

– Runtime ROOT File I/O replacement using HEPnOS

– Include all levels (or layers) of data aggregation with 

metadata

• Data distribution and data parallelism implicit to user

art modules/user	code

Algo 3Algo 1 Algo 2

Event	“Proxy”

get<product>(key)

Source

Prepare	
“correct”	
proxy

HEPnOS C++	API

load

Interaction	with	proxy

Interaction	with	HEPnOS
User	path
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• Prototype test programs are running:

– one to read from existing art/ROOT data files, and to write to the new data store

– one to read from the new data store, and verify the integrity of the data

• We are using Docker containers for easy portability of development environment

– Some of us develop on macOS laptops, others on a variety of Linux installations

– We will deploy to NERSC (through Shifter) and ALCF (through Singularity)

• The dataset (description and name) is included in the namespace 

– Interesting to have direct access to any part from any process on any node

– Opens up new workflow possibilities

– Can readily represent and access things below the event, such as NOvA slices

Current status and future direction
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Physics generator data access
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• Adequate predictions of many observables require input from matrix element 

generators

– e.g. Getting angular distribution of jets correct

• ME generators (Sherpa, MadGraph) are used to generate high-multiplicity parton-

level events

– LHE description is the typical representation 

– Used as input to Pythia8 to get fully simulated events

• XML-based LHE data format is unsuitable for HPC

• Task is to write LHE data in HDF5 instead

– We can accumulated all the XML data into one HDF5 file

– Also working on writing HDF5 directly from Sherpa

• Will work seamlessly with our new DIY-based generator applications that tie 

together Pythia8, LHAPDF, and Rivet

Matrix element (ME) calculations and physics generators

8/23/2018 J.Kowalkowski – Scalable I/O Workshop28



• I/O will not be an issue
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Generator data available for any size study
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• Organization of running Pythia8 on 

HPC facilities



• This work may be useful to inform other projects that are ongoing or starting

• NOvA has embraced the work we are doing here

– Took ownership of the HDF writer module

• Converting full HEP experiment datasets has been very difficult

– Heavily influenced by ROOT tree structure (NOvA tuple organization)

– Complexity of data structures (LArSoft RawDigits class and others) 

– Some data structures have been reorganized (vectorization becomes straightforward)

• Python was excellent for prototyping; further work is needed to determine if we are 

getting the best performance possible.

– Pandas provides a powerful set of abstractions for analysis tasks

– Comparisons of C++ and python/pandas forthcoming

Summary
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• Performance studies and tuning will continue 

• Upcoming C++ codes will be using DIY, and possibly additional HPC-centric 

workflow tools such as Decaf

• Will be working with HEPCloud on integrating dataset handling.

• Looking into 

– Adding Summit as a platform

– Making sure that analysis involving heterogeneous computing is handled

• As we more calculation towards reconstruction activities in the framework, the 

same techniques will be applied: 

– read the right information into memory, 

– use vectorized libraries for high-level operations on the data, 

– use the network to round up results that are distributed around the system

Future directions
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• Extend physics reach of LHC and 

neutrino experiments

– Event generator tuning

– Neutrino oscillation and cross-section 

measurements

– Detector simulation tuning

HEP Data Analytics on HEP: Goals
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• Transform how these physics tasks 

are carried out through ASCR math 

and data analytics

– High-dimensional parameter fitting,

– Workflows supporting automated 

optimization

– Distributed dataset management 

storage and access (in situ) for 

experiment data

– Introduction of data-parallel 

programming within analysis 

procedures

• Accelerate HEP analysis on HPC 

platforms
http://computing.fnal.gov/hep-on-hpc/
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