

Birck Nanotechnology Center

Center for Nanoscale Materials

2D Electronics with Transition Metal Dichalcogenides : Progress and Prospect

Saptarshi Das, PhD

http://web.ics.purdue.edu/~sdas/

das@anl.gov, sdas@purdue.edu

765 237 7938

Current Affiliations

(June 2013 – Present)

1. Post-doctoral Research Scholar Center for Nanoscale Materials Argonne National Laboratory Lemont, Illinois 60439 2. Adjunct Birck Research Scholar Birck Nanotechnology Center Purdue University West Lafayette, Indiana 47907

DUE

Discavery Park

- 1. What is Unique about TMDs?
- 2. Exploring Transistors based on TMDs
- 3. Tunneling Phenomenon in TMDs
- 4. Extreme Sensitivity of TMDs to External Forces

URDUE Discovery Park

- 1. What is Unique about TMDs?
- 2. Exploring Transistors based on TMDs
- 3. Tunneling Phenomenon in TMDs
- 4. Extreme Sensitivity of TMDs to External Forces

Natural 2-D System

Discovery Park

PURDUE UNIVERSITY

A

Argonne

Center for Nanoscale Materials

Periodic Table of Elements

88 TMDs have been explored since 1960s

Metals: ScTe₂, TaS₂, etc.

Birck Nanotechnology Center

Semiconductors: WSe₂, MoS₂, etc.

Insulators: PtSe₂, PdS₂, etc.

Superconductors: VS₂, NbSe₂, etc.

Exfoliation

Argonne

Center for Nanoscale Materials

Large Scale Growth

Physical Vapor Deposition

Hydrothermal Synthesis

Electrochemical Synthesis

Liu, K. et al. Nano Letters, 12, 2012

Patel, P. R., et al. J.Adv.Dev.Res. 3, 2012

Layered Compounds

The d-orbital electronics

Center for Nanoscale Materials

Mo: [Kr]. 5d⁵.6s¹ W: [Xe].4f¹⁴.5d⁴.6s²

For the first time we have **Semiconductors** with conduction electrons contributed by **d-orbital**

Periodic Table of Elements

Significant Change in Band-structure due to :

✓ Charge
✓ Strain
✓ Heat
✓ Light

URDUE Discovery Park

- 1. What is Unique about TMDs?
- 2. Exploring Transistors based on TMDs
- 3. Tunneling Phenomenon in TMDs
- 4. Extreme Sensitivity of TMDs to External Forces

Transistors based on TMDs

Going Beyond Silicon CMOS

Gate

ON-state performance is impacted

Going Beyond Silicon CMOS

Alternative Channel (body) Materials

Ultra thin body

High mobility (diffusive) / High effective mass (ballistic)

Small in-plane dielectric constant

Molybdenum Disulphide: MoS₂

Kumar, A. et al., Physica B, 407, (2012)				
MoS ₂	ε _{BODY} ⊥	ε _{BODY} ∥		
Monolayer	4.8	3.0		
Bilayer	6.9	4.4		
6-layers	9.8	6.4		
Bulk	12.8	8.9		

Transistor Optimization: Contact

Ti : n-FET (Qiu et al.) Ni : n-FET (Liu et al.) Au : n-FET (Radisavljevic et al.) Pd : n-FET (Neal et al.)

Ohmic Contact !!!! No Fermi level pinning !!!

Scandium is the best metal Contact

Saptarshi Das, et al., "High Performance Multi Layer MoS₂ Transistor with Scandium Contacts", **Nano Letters** 13 (1), 100-105, **2013.**

Transistor Optimization: Flake Thickness

PURDUE UNIVERSITY Discovery Park Birck Nanotechnology Center **Transfer Characteristics Output Characteristics** 20 nm $V_{DS} = 0.2 V$ 10 nm t_{OX} =100nm 0.8 6 nm $L_{CH} = 5 \,\mu m$ 0.6 (шп/үп) ^{SQ}I $I_{\rm DS}$ (μ A/ μ m) 4 nm 2 nm **Scandium Contact** T = 300 K 0.2

Sc

 $V_{GS} - \overset{0}{V}_{TH}$ (V)

0--5

Thomas - Fermi Screening

$$Q_{i} = \frac{1}{t_{OX} + r_{i}} \exp(-\frac{t_{OX} + r_{i}}{\lambda_{TF}})$$

Inter-layer Coupling Conductance

R_{int}

Transistor Optimization: Flake Thickness

Sc

Sc

JRDUE Discovery Park

Birck Nanotechnology Center

6-10nm Flake is optimum for high mobility channel

Cover Article

Saptarshi Das, et al., Screening and Interlayer Coupling in Multilayer MoS₂, **Physica Status Solidi, RRL**, 7 (4), 268-273, **2013.**

Channel Length Scaling

Sc Contacts

8nm MoS2 Flake

 $L_{CH-min} = 50nm$

 $L_{CH-max} = 1 \mu m$

 $t_{OX} = 20nm SiO_2$

✓ 15 times better gate control compared to 300nm oxide.

✓ Reduces the possibility of short channel effect.

$$\lambda = \sqrt{\frac{t_{OX}}{\epsilon_{OX}}} t_{BODY} \epsilon_{BODY}$$

Channel Length Scaling

Channel Length Scaling

Saptarshi Das, et al., "Evaluating the Scalability of Multilayer MoS2 Transistors", Device Research Conference , 2013.

"Contact Resistance"

"Contact Resistance"

Different numbers of interlayer resistors are involved in the current flow for different gate biases.

Thomas-Fermi charge screening: $\lambda_{TF} = 7nm$ Inter-layer resistive coupling: $R_{int} = 2.4k\Omega - \mu m$

"HOT-SPOT"

Graphene

Saptarshi Das, et al., "Where does the Current Flow in the Two Dimensional Layered Systems", Nano Letters 13 (7), 3396-3402, 2013.

Tungsten Diselenide: WSe₂

Tungsten Diselenide: WSe₂

Tungsten Diselenide: WSe₂

Work Function Engineering for CMOS Compatibility

Saptarshi Das, et al., "WSe2 Field Effect Transistor with Enhanced Ambipolar Characteristics", Applied Physics Letters, 103 (10), 103501-5, 2013

Molybdenum Diselenide: MoSe₂

Molybdenum Diselenide: MoSe₂

Molybdenum Diselenide: MoSe₂

Center for Nanoscale Materials

Electronic Bandgap Extraction

Saptarshi Das, et al., "Electronic Bandgap and Band Alignment of Transition Metal Dichalcogenides", submitted, 2014

All 2D Transistor

Flexible Transparent Transistor

PURDUE UNIVERSITY

Disc*very Park

Birck Nanotechnology Center

Flexible Transparent Transistor

Discovery Park

PURDUE INIVERSITY

Center for Nanoscale Materials

Saptarshi Das , et al., "All 2D, High Mobility, Flexible and Transparent Thin Film Transistor", submitted, 2014

Birck Nanotechnology Center

URDUE Discovery Park

- 1. What is Unique about TMDs?
- 2. Exploring Transistors based on TMDs
- 3. Tunneling Phenomenon in TMDs
- 4. Extreme Sensitivity of TMDs to External Forces

Tunneling FET

PURDUE UNIVERSITY **Discovery** Park

Band to Band Tunneling

Birck Nanotechnology Center

$$I_{ON} \propto T_{WKB} = exp(-\frac{4}{3\hbar}\sqrt{2m_e E_G}\lambda)$$
$$T_{WKB} = exp(-\frac{4}{3\hbar}\sqrt{2m_e E_G d_{OX} d_{BODY}})$$

TMDs

Important Parameters for Tunneling

PURDUE UNIVERSITY

Discovery Park

Band to Band Tunneling

Birck Nanotechnology Center

Discovery Park

PURDUE INIVERSITY

Mono-layer Dichalcogenide	E _G (eV)	m _n (m ₀)	m _p (m ₀)	I _{BTBT} (mA/μm)
MoS ₂	1.79	0.46	0.56	0.16
MoSe ₂	1.49	0.55	0.64	0.18
MoTe ₂	1.13	0.55	0.67	0.27
WS ₂	1.96	0.30	0.41	0.18
WSe ₂	1.61	0.34	0.44	0.20
WTe ₂	0.71	0.31	0.41	0.67

Saptarshi Das, et al., " Towards Low Power Electronics: Tunneling Phenomena in Dichalcogenides", ACS Nano, 2014.

Schottky Barrier Tunneling : MoS₂

Schottky Barrier Tunneling : MoS₂

Schottky Barrier Tunneling : MoS₂

Band to Band Tunneling: WSe₂

Band to Band Tunneling: WSe₂

Band to Band Tunneling: WSe₂

Saptarshi Das, et al., " Towards Low Power Electronics: Tunneling Phenomena in Dichalcogenides", ACS Nano, 2014.

URDUE Discovery Park

- 1. What is Unique about TMDs?
- 2. Exploring Transistors based on TMDs
- 3. Tunneling Phenomenon in TMDs
- 4. Extreme Sensitivity of TMDs to External Forces

Temperature

Thicker Flakes are extremely sensitive to Temperature Change

49

Gas Environment

Discovery Park

PURDUE UNIVERSITY

Extremely sensitive to Environment

Light

Extremely sensitive to Light

Strain

Center for Nanoscale Materials

Band gap Engineering through Strain

Strain Induced Metal Insulator Transition

Birck Nanotechnology Center

Center for Nanoscale Materials

Conclusion

Center for Nanoscale Materials

- 1. What is Unique about TMDs?
 - ✓ Natural 2D System.
 - ✓ Exfoliation gives easy access to pristine quality of the material.
 - ✓ For the first time **Semiconductors** with **d-orbital** electronics.
- 2. Exploring Transistors based on TMDs
 - ✓ How to make good quality Contact
 - ✓ How to optimize layer thickness
 - ✓ Scalability beyond 10nm CMOS node
 - ✓ Where does the Current flow in layered systems
 - ✓ Flexible Electronics
- 3. Tunneling Phenomenon in TMDs
 - ✓ Schottky Barrier Tunneling in MoS₂
 - ✓ Band to Band Tunneling in WSe₂
 - ✓ Projection for TFETs based on TMDs
- 4. Extreme Sensitivity of TMDs to External Forces
 - ✓ Temperature, Pressure, Light and Strain changes electronic transport in TMDs

Birck Nanotechnology Center

PhD Advisor

Joerg Appenzeller Scientific Director of Birck nanotechnology Center & Professor of Electrical and Computer Engineering Purdue University West Lafayette, Indiana, 47907

Collaborators

Abhijith Prakash

Ramon Salazar

Hong-Yan Chen

Ali Razavieh

Ashish Verma Penumatcha

Center for Nanoscale Materials

Funding Sources

Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Birck Nanotechnology Center

Center for Nanoscale Materials

Thank You