Developing the MCP-based 20-inch spherical Photomulitipliers

Xing Wang Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences On behalf of the collaboration group

Motivation

For the next generation neutrino experiments in China

To solve the mysteries of the universe by measuring neutrino particles. Relies on a large number of 20-inch diameter photomultipliers.

Challenges

Challenges compared with **KamLAND** (Kamioka Liquid Scintillator Antineutrino Detector, Japan 2002)

	KamLAND	JUNO		
Detector	~1 kt Liquid Scintillator	20 kt Liquid Scintillator		
Energy Resolution	6%/√E	3%/√E		
Light yield	250 p.e./MeV	1200 p.e./MeV		
More photons, how and how many?				
High transparent LS	15m	25m		
High light yield LS	1.5g/I PPO	5g/I PPO		
Photocathode coverage	34%	80%		
High QE PMT	20%	30%		

Requirements for photodetectors

- Large area photocathode
- Temperature /Magnetic environment
- Low cost
- High QE

Large area PMTs of Hamamatsu

The QE of 20" PMT-R3600

MCP-PMT R&D collaboration

Institute of High Energy Physics Chinese Academy of Sciences

Started at 2009, the same time as LAPPD

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

2 Institutes , 1 University, 4 Companies

The R&D plan

Status

Photocathode **MCPs**

Anode

- Design
- Glass shell
- MCP
- Photocathode
- Prototype

The design of new MCP-PMT

- Using two sets of Microchannel plates (MCPs) to replace the dynode chain
- Using transmission photocathode (front hemisphere) and reflection photocathode (back hemisphere)

	Conventional PMT	New PMT
Quantum Efficiency (QE)	20%	QE _{Trans} =30%, QE _{Ref} =30%
Collection Efficiency (CE)	70%	70%
Detection Efficiency (DE)	QE _{Trans} *CE=14%	QE _{Trans} *CE +TR*QE _{Ref} *CE = 30%

The Simulation work

Simulate the possibility of the 20" spherical MCP-PMT

- Electron Multiplier: small size MCP (φ=18mm);
- Photocathode area: transmission + reflection, nearly 4π effective area;
- Could the small MCP collect all the photoelectrons from the photocathode?

Lorentz-3D EM simulation results shows that nearly all the photoelectrons could be collected by the small MCP

The large area glass shell

We have already got the 5inch ~20-inch glass shell

- with very good water resistance characteristics (to be submerged in liquid for long time)
- With very low radioactive background (to reduce the background rates)

Th232 Κ U238 Th232 Κ U238 Sample Bq/kg Bq/kq Bq/kg ppb ppb ppm 3 46 6.95 349 1 851.2 4.31 224.0 Glass--YC ± 0.81 ± 18.6 ± 26.1 +0.23 ± 0.30 ± 73.8 4.03 3.14 14.87 141.8 639.6 237.1 quartzite-YC +0.48+0.32+78.7+54.9 ± 1.70 +38.9≤1.82 ≤40.5 ≤81.2 quartzite --7# ≤0.50 ≤0.33 ≤58.8 quartzite --8# ≤0.47 ≤0.31 ≤1.72 ≤38.1 ≤76.3 ≤55.6 51.8 DayaBay 0.64 0.5 2.7 123.0 87.2 JUNO 0.106 0.403 13.0 0.149 12.1 26.1

Low background gamma spectrometer measurements

20-inch glass shell

The low cost MCP

Based on our design, we can accept **small** MCP with **some defects**.

- Asymmetric surface _____
- Blind channels —
- Non-uniform gains

 Non-uniform gains
- Flashing channels ~

		-
1	~	

8 inches x 8 inches uniform	
MCP, Gain~10000, LAPPD	

Diameter mm	Pore size µm	Volume resistance MΩ	Gain (800V)
18	6	70-250	>7000
26	10	50-300	>2500
33	12	80-300	>3000

Low cost, 18mm and 33mm MCPs are supplied by North Night Vision Technology Limited Company (NNVT)

Assembly

Alkali sources

Main processes in PMT production

- ① Cleaning of all materials
- ② Selecting of MCPs
- ③ Assembling and wiring of the electrodes
- ④ Sealing of the glass shell and stem
- 5 Leak detection
- ⑥ Photocathode activation
 - ⑦ Sealing in vacuum

Glass shell Ready for photocathode deposition

The photocathode deposition

Different deposition processes

Bialkali (Sb-K-Cs): matches the wavelength of Cherenkov light (350-410 nm)

Uniformity

- Scanning photocathode platform
 - 3D rotation
 - 8-inch PMT
 - Moveable in x, y, z
 - QE, uniformity

3D display of the PC in Matlab software

Quantum efficiency

Wavelength /nm

Prototype with horizontal MCPs

Single Photoelectron Spectrum

Prototype with vertical MCPs

Single Photoelectron Spectrum

Near future work

- Vacuum transfer system
 - > 8, 12, 20 inch PMT prototype
 - Chamber 1: alkali source, anode, and other glow discharge part
 - Chamber 2: photocathode deposition, hot seal
 - Chamber 3: MCP scrubber
- 20-inch PMT mass production

	Success in 8 inches MCP- PMT, 20 inches PMT will come on June	The first 6 cm photodetector will come to world on May	
Applications	Neutrino experiments	Neutrino experiments, medical applications, etc	
Cost	Low	Low	
Volume	Large	Small	
Time resolution	2-3 nanoseconds	< 100 picoseconds	
Readout electronics	Simple	Complicated	
Quantum efficiency	30%	24%	
Effective area	20 inches x 20 inches	8 inches x 8 inches	

Other Research Areas in XIOPM

Streak camera

The streak camera is an ultra high-speed detector which captures light emission phenomena occurring in extremely short periods

Guide to streak cameras, Hamamatsu

Features

- Simultaneous measurement of light intensity on both temporal and spatial axis
- Superb temporal resolution (<0.2 ps)
- Measurement ranges from X-rays to the near infrared rays
- Ultrahigh sensitivity (single photoelectron can be detected)

Other Research Areas in XIOPM

• Streak camera National funding: 160M CNY for 42 months

Applications

- Dynamics: semiconductor physics, photochemistry
- Diagnostics: electron and photon beam profile in advanced light source and accelerator (APS/AWA)
- Plasma physics: high energy laser nuclear fusion
- Ultrafast electron diffraction

Time

Compact streak camera

Z-Pinch result

Other Research Areas in XIOPM

Ultrafast electron diffraction

Ultrafast electron diffraction (UED) has the potential for **realtime imaging of structural changes on atomic length scales**, thus promising to make a profound impact on a large area of science including **biology**, **chemistry**, **nano and material sciences**[™]

Diffraction pattern of polycrystalline Al film (20 nm)

UED facility in XIOPM

High resolution

- 100 fs
- sub-Angstrom

TM P. Musumeci et al., Ultramicroscopy 108 (2008) 1450– 1453

Summary

- 8-inch MCP-PMT prototype using non-transfer system (finished)
 - Fabrication and evaluation
 - High QE, single photoelectron spectrum, good uniformity
- 20-inch MCP-PMT prototype production using transfer vacuum system (coming soon)
- Streak cameras and ultrafast electron diffraction (possible collaboration?)

Thanks

What I learned

- Advanced design of MCP-PMT
- Sealing of a nonfunctional MCP-PMT
- Photocathode growth by MBE
- MCPs and their measurements using phosphor screen and cross delay lines
- The cooperation with a large team
- The American style of writing a proposal
- The management of a big project in America
- Very appreciate the two business trips to Berkeley and Cornell
- Communications and potential cooperation with ANL, BNL, LBNL and UIUC

Thanks all of you! Hope I have chance to come here again! Welcome to Xi'an!

QE curves of 6 types

Super-K and Hamamatsu

Hyper-Kamiokande Overview

•Water Cherenkov, proved technology & scalability:

- Excellent PID at sub-GeV region >99%
- Large mass → statistics always critical for any measurements.

Total Volume	0.99 Megaton
Inner Volume	0.74 Mton
Fiducial Volume	0.56 Mton (0.056 Mton $ imes$ 10 compartments)
Outer Volume	0.2 Megaton
Photo-sensors	 •99,000 20"Φ PMTs for Inner Detector (ID) (20% photo-coverage) •25,000 8"Φ PMTs for Outer Detector (OD)
Tanks	 2 tanks, with egg-shape cross section 48m (w) × 50m (t) × 250 m (l) 5 optically separated compartments per tank

25 x Super-Kamiokande 4

Overall Schedule

Complete conceptual design, complete ci design, & bidding 2013	vil	PMT production lin manufacturin 2015	ne Ig	Complete civil construction start detector construction & assembly 2017	,	Complete detector assembly & installation, & LS filling 2019
	2014 Start civil constructio complete prototyping (PMT & detector)	on, F S J F	2016 Start PMT production, start detected production pidding	or or	2018 Start LS production	