Probing the dark ages at mm-wavelength KIDs and on-chip spectometers Erik Shirokoff, U. Chicago ANL Workshop on Innovative Devices and Systems

University of Colorado Boulder

The SuperSpec Team

- Caltech/JPL C. M. Bradford G. Chattopadhyay P. Day S. Hailey-Dunsheath M. Hollister A. Kovacs H. G. Leduc C. McKenney R. Monroe H. Nguyen R. O'Brient S. Padin T. Reck L. Swenson
- J. Zmuidzinas

<u>University of Chicago</u> E. Shirokoff

Cardiff University

- P. Barry
- S. Doyle
- C. E. Tucker

<u>Arizona State University</u> P. Mauskopf

<u>University of Colorado Boulder</u> J. Glenn

Spectroscopic redshift surveys

- Current and near-future continuum imaging surveys will rapidly discover • new populations of Sub-Millimeter Galaxies
- Redshift determination & studies of interstellar medium require • spectroscopy of CO, [CII] and other fine-structure lines at mm-wavelength
- A 3 year survey with a 30 300 beam instrument such as X-Spec will • measure redshifts for thousands of galaxies at z > 3.5

GOODS 850-5; Wang+09

140

300

[OI] 1-0

Tomographic Mapping of [CII] at EoR

- Line intensity mapping of [CII] 158µm during reionization probes
 - Galaxy clustering
 - Mean [CII] intensity and galaxy luminosity function
- Optimum resolving power is R ~ 100

Z-Spec: a pioneering mm-wavelength spectrometer

120 channels from 190-305 GHz

$$R = \frac{\nu_{\rm obs}}{\Delta \nu} = \sim 250$$

First light in 2005, and still in the field producing science results.

62 cm

A general filter bank (or cochlear) spectrometer:

Incoming radiation is sorted by narrow band filters

1 ~

 $C_c =$

 $\lambda/2$

--- 2

SuperSpec first generation design

Sonnet Simulations

Gen1 Probe-Fed Waveguide and Horn

Design and images by T. Reck

- Full band spectra measured with CASPER-ROACH based FPGA readout system (same system deployed by MAKO/CSO)
- Residual out of band response typically 30dB below peak
- Channel center placement has 2 3% scatter partially systematic with frequency, Q, location in filter bank
- Too large to be errors in resonator length --> wavespeed variation
- Will soon test chips with large bank of near-identical channels to measure real dispersion.

Coherent Source Measurements

- Spectral response characterized using a swept coherent source
- Normalize response with near simultaneous measurements of BB ref channel well described by Lorentzian
- Comparison of designed and measured Q indicates a source of loss characerized by Q_{loss} ~ 1440 --> likely SiN_x ILD in microstrip
- Greater than 50% of the incident power lost for R > 420
- Better dielectrics (a-Si, crystal Si)

Gen2 – Improved NEP and diagnostics

- Modifications to improve diagnostics
 - Simpler planar antenna + hyperhemispherical lens
 - BB detectors couple to a longer section of the feedline, comparable to a wavelength in length
 - Small number (10) of isolated spectral channels
 - Dark channel

0.00

- Modifications to boost sensitivity
 - Shrink inductor volume by x5
 - More uniform current density
 - Wider IDC spacing

Gen2 Packaging

Sockout Measurement

RV vs P/V plot

Close to linear frequency shift with loading

Excess Noise with Loading

Excess Noise with Loading

System NEP and Future Improvements

- Our current R = 250 channels provided NEP_{TLS}(1Hz) = 5.2×10^{-16} W/Hz^{1/2}, front of cryostat -> **factor of 16 above NEPy at CSO**
- Near term improvements -> factor of 3.4 increase
 - AR coating lens
 - Adjusting spectrometer coupling strength
 - Dropping Tc from 1.65K to 1.2K

-> factor of 2 better than NEPγ for R = 50!

-> candidate for tomography

- Moderate term improvements -> factor of >6 increase
 - Reducing inductor linewidth from $1\mu m$ to $0.5\mu m$
 - Anomalous factor of 2 in system optical efficiency
 - Thicker capacitor, wider IDC spacing
- Longer term improvements
 - Switching to Tc = 0.8K -> factor of 2.5 increase
 - Better dielectric -> factor of 1.4 increase

<u>We've achieved</u>:

- Working mm-wave filter bank
- Narrow (R~700) channels
- Low out-of-band loading (1 part in 10⁴)
- High-Q (>10⁵), 100 MHz KIDs
- Background limited operation at R~50
- Hundreds-of-pixel FPGA MUX readout

<u>We're working on</u>:

- New design for higher response
- Understanding TiN response
- Channel placement accuracy
- Lower loss dielectrics for high-R channels

Figure based on Zmuidzinas internal memo

Tolerances for an $\mathbf{R} = 700~\mu$ -strip resonator on 0.5μ silicon nitride

				Fractional change in				
	variable	$\mathbf{description}$	change	Freq	\mathbf{Qi}	\mathbf{Qc}	\mathbf{Qr}	_
$\operatorname{Lithography}$	l	resonator length	$0.1\mu{ m m}$	1×10^{-3}	—	—	_	
	g	feed to reso gap	$0.1\mu{ m m}$	8×10^{-5}	_	0.19	0.09	
	g_A	absorber to reso gap	$0.1\mu{ m m}$	4×10^{-5}	0.05	_	0.03	
	w	Nb line width	$0.1\mu{ m m}$	3×10^{-3}	0.06	0.11	0.08	
	w_A	TiN line width	$0.1\mu{ m m}$	6×10^{-5}	0.06	—	0.03	
${ m Materials}_{\parallel}$	dx	Nb/TiN offset in $\mathbf x$	$0.1\mu{ m m}$	5×10^{-6}	0.006	_	0.003	
	R_{TiN}	Resistivity	20%	6×10^{-5}	0.03	-	0.02	-
	ϵ_N	SiN permitivity	10%	0.03	0.20	-0.03	0.09	
	T_N	SiN Thickness	10%	2×10^{-3}	0.30	0.40	0.35	
	$\tan - \delta$	SiN loss	$+10^{-4}$	_	0.04	_	0.02	

 $\frac{\Delta Q_r}{Q_r} \sim 10\%$

We can use this as a radiation detector.

Figures from Mazin 2009 and Gao 2010