Cosmic Microwave Background (CMB) Detectors: Lessons Learned and Future Directions

Bradford Benson (Fermilab, U. Chicago)

Outline

1. Science Motivation

Fundamental physics and astrophysics from the CMB

2. Total Intensity Bolometers

• From hand-made bolometers to single pixels to arrays

3. The Polarization-Sensitive Bolometer

From hand-made bolometers to single pixels to arrays

4. Future Directions

• The path to CMB-S4

2013: Planck 30μK RMS fluctuations on 3 K background

Credit: ESA (Planck)

The CMB Power Spectrum

Encoded within the primordial CMB power spectrum is information regarding the Universe's **initial conditions**, its **geometry** (flat vs curved), and its **content** (baryons, dark matter)

Evolution of CMB Power Spectrum Measurements

Evolution of CMB Power Spectrum Measurements

Today: Outstanding agreement between CMB power spectrum measurements

mid-2013: CMB Polarization Measurements

BICEP (Barkats et al. 2013, arxiv:1310.1422)

July 2013: SPTpol Detection of Lensing B-modes

SPTpol: Hanson et al, Phys.Rev.Lett.111:141301,2013 (arXiv:1307.5830) Also recently detected by Polarbear arXiv:1312.6645, 1312.6646, 1403.2369

March 2014: BICEP2 Detection of B-modes!

BICEP2 Collaboration (arXiv:1403.3985, arXiv:1403.4302)

BICEP2: 512 detectors 150 GHz made by JPL

Evolution of Detector Sensitivity

CMB science has been driven by advances in detector technology; *detector speed has ~doubled every year for 50 years!*

Plot from J. Zmuidzinas

UCSB

Evolution of CMB Focal Planes

Outline

1. Science Motivation

- Fundamental physics and astrophysics from the CMB
- 2. Total Intensity Bolometers
 - From hand-made bolometers to single pixels to arrays

3. The Polarization-Sensitive Bolometer

• From hand-made bolometers to single pixels to arrays

4. Future Directions

• The path to CMB-S4

The Bolometer

A bolometer is the most sensitive ~mm-wavelength detector

Thermal Bath (T_{bath})

Bolometer Design / Noise Properties:

- Optical Power: *P*_{opt}
- Thermal Conductivity: $G \sim P_{tot} / dT$
- Thermal Noise:

$$NEP_G^2 \approx 4kT_c^2\overline{G}$$

• Photon Noise:

$$NEP_{\gamma}^2 \approx 2hv_0 P_{opt}$$

Goal: Design G, Tc such that thermal noise < photon noise.

SuZIE Bolometers (1992-1997)

A Hand-Made bolometer!

- 100 nm thick bismuth absorber on sapphire substrate suspended by nylon wires which set the thermal conductivity (G)
- NTD Germanium thermistor epoxied to center of bolometer
- Cooled to 300 mK, NEP was within a factor of three of photon limit!

The SuZIE Photometer

The Spider-Web Bolometer

- SuZIE was the first experiment to use a JPL "spider-web" bolometer!
 - Silicon nitride substrate with gold absorber and NTD germanium thermistor
 - Same JPL design later used for ACBAR, Boomerang, Planck experiments

• For SPT, UC-Berkeley incorporated a transition edge sensors (TES)

as the thermistor, operated on its superconducting transition

Fabricated by Erik Shirokoff! (new faculty at U. Chicago)

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
100, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 100,150,220 GHz

2012: SPTpol

1600 detectors 100,150 GHz **+Polarization**

2016: SPT-3G ~15,200 detectors 100,150,220 GHz **+Polarization**

SPT-SZ Receiver (2004-2008)

- Develop "scalable" detector technology to increase focal plane mapping speed
- Built and designed at UC-Berkeley
- Required development of several key technologies:
 - Pulse Tube Coolers
 Superconducting (TES)
 bolometer arrays
 Multiplexed Iow-noise SQUID readout electronics

Superconducting Transition Edge Sensor (TES)

Transition Edge Sensors (TES)

- Often a normal-metal/superconducting bi-layer
- Typical combinations (e.g., Al/Ti, Mo/Au,Al/ Mn) require ~30-100 nm film thickness for transitions of ~500 mK

Thermistor: TES vs NTD Germanium

Fab - TES's can be fabricated on bolometer
 Linearity - Steepness of *R*(*T*) curve
 determines strength of electrothermal response
 Microphonics - Low-impedance = low-microphonic response

	Resistance (Ohms)	Electrical Loop Gain
NTD Germanium	~2-10 M	~1-5
TES	~1	~20-1000

Frequency Domain Multiplexing (fMUX)

- Developed current summing fMUX SQUID readout at UC-Berkeley and Lawrence Berkeley Labs (LBL)
- AC Bias row of detectors with comb of frequencies between 300-1000 kHz at RLC filter resonances: $2\pi f_{\rm filt} = w_{\rm filt} = 1/(LC)^{1/2}$
- Crosstalk determined by Q of LC resonance (designed to be < 1%): $\Delta w_{\rm filt} = R/L$, therefore $Q = (L/RC)^{1/2}$

Frequency Domain Multiplexing (fMUX)

- AC Bias row of detectors with comb of frequencies between 300-1000 kHz at RLC filter resonances: $2\pi f_{\rm filt} = w_{\rm filt} = 1/(LC)^{1/2}$
- Crosstalk determined by Q of LC resonance (designed to be < 1%): $\Delta w_{\rm filt} = R/L$, therefore $Q = (L/RC)^{1/2}$

SPT-SZ Detector Module and LC Board

•Wafer wire-bonded to circuit board with LC circuit, which sets each bolometer's resonant frequency for frequency Multiplexing (fMUX)

Outline

1. Science Motivation

Fundamental physics and astrophysics from the CMB

2. Total Intensity Bolometers

• From hand-made bolometers to single pixels to arrays

3. The Polarization-Sensitive Bolometer

• From hand-made bolometers to single pixels to arrays

4. Future Directions

• The path to CMB-S4

Polarization Sensitive Bolometers (PSBs)

JPL modified spider-web concept to add polarization sensitivity

- $\bullet~{\rm SiN}$ substrate with linear crossed pattern, gold added only along one direction
- NTD thermistor on edge of absorber, to minimize cross-polar response
- Design used for QUAD, BICEP, Boomerang2k, and Planck experiments
- Single-pixel concept needs to be scaled up for ~1000 element focal planes

SPTpol: Detectors

For SPTpol, we scaled the PSB concept to ~1000 pixel array, using two different detectors technologies;

- At 90 GHz, single pixel, crossed absorbers with TES made at Argonne
- At 150 GHz, array of antenna-coupled TES made at NIST (Boulder)

95 GHz Single Pixel PSBs

95 GHz pixels made in collaboration with Argonne National Labs (ANL)

SPTpol 95 GHz array of 190 pixels

Spacer

Wire Bonds

- Crossed absorbers with TES's in waveguide behind contoured feed horn with a $\lambda/4$ backshort
- Wire-bonds maintain ~50 um separation between crossed absorbers

Fabricated by Vlad Yefremenko at ANL

150 GHz Array PSBs

Fabricated by Dale Li, Sherry Cho at NIST

150 GHz Array PSBs

Horn Assembly

rn array (500 μm) into horn d

d RF ontrol

.

Outline

1. Science Motivation

Fundamental physics and astrophysics from the CMB

2. Total Intensity Bolometers

• From hand-made bolometers to single pixels to arrays

3. The Polarization-Sensitive Bolometer

From hand-made bolometers to single pixels to arrays

4. Future Directions

• The path to CMB-S4

Evolution of CMB Focal Planes

SPTpol Detector: Antenna-coupled microstrip technology

Antenna-coupled architecture allows multiple detectors per pixel, **in-line microstrip filters act as band-defining filters**, therefore with a broadband antenna multiple frequencies also possible

Fabricated by Dale Li, Sherry Cho at NIST

Prototype SPT-3G Multi-chroic Pixel

Prototype Polarbear2 / SPT-3G single-pixel. Broadband polarization-sensitive "sinuous" antenna at 90 and 150 GHz, (fabricated by Toki Suzuki at UC-Berkeley) Silicon-Nitri

Silicon-Nitride TES Island

Evolution of CMB Focal Planes

working on developing Stage II to Stage II detector based on 3-band, dual polarization pixel.

- Background limited performance per detector
- Uniform properties with high-fab-throughput
- Consistent fabrication on 6" wafers

CMB Stage-4 Experiment Described in Snowmass CF5: Neutrinos: arxiv:1309.5383 Inflation: arxiv:1309.5381

CMB Experimental Stages

Snowmass: CF5 Neutrinos Document arxiv:1309.5383

CMB-based Cosmological Constraints

	$\sigma(r)$	$\pmb{\sigma}(N_{ ext{eff}})$	$\sigma(\Sigma m_{\nu})$ (meV)
Current CMB	0.05	0.34	117
Stage 2	0.03	0.12	96
Stage 3	0.01	0.06	61*
Stage 4: CMB-S4	0.001	0.02	16**

* Includes BOSS prior ** Includes DESI prior

The CMB-S4 sensitivity would achieve important benchmarks:

- $\sigma(r) \sim 0.001$; Differentiate between large vs small field inflation.
- $\sigma(N_{\text{eff}}) \sim 0.02$; Precision constraint of relativistic energy density; search for deviations from standard model prediction of 3.046.
- $\sigma(\Sigma m_{\nu}) \sim 16 \text{ meV}$; Cosmological detection of neutrino mass.

Snowmass: CF5 Neutrinos + Inflation Document arxiv:1309.5383, 1309.5381

Summary and Big Questions

This science is just beginning!

- First detection of CMB B-mode polarization in the past year!
- Advances in measurements driven by detector technology
- Experimental challenge today is to increase detector counts.
- Antenna-coupled TES detectors are the baseline technology for next-generation experiments

This science is exciting! CMB experiments are trying to answer fundamental questions about the Universe: Did the universe start with an epoch of inflation? What is the energy scale of inflation? Is there any "dark radiation"? What is the sum of the neutrino masses?

Superconducting Transition Edge Sensor (TES)

Bolometer Design Properties:

• Thermistor provides electrical power to balance optical power on bolometer:

$$P_{opt} + P_{elec} = \int_{T_{base}}^{T_{bolo}} G(T) \, dT$$

• Electrical feedback determined by slope of R(T) curve, parameterized by α parameter:

 $\alpha = \frac{T}{R} \frac{dR}{dT} \qquad \begin{array}{l} \textbf{TES} ~ \textbf{-20-1000} \\ \textbf{NTD} ~ \textbf{-3-10} \end{array}$

• Can define a "loop gain" in analogy to electronic feedback circuits:

$$\mathcal{L} = \frac{\alpha P_{elec}}{GT_b} \qquad \begin{array}{l} \textbf{TES} \sim \textbf{20-1000} \\ \textbf{NTD} \sim 1-5 \end{array}$$

 Increased loop gain improves the linearity (in responsivity) and speed of the detector:

$$S_I = \frac{\delta I}{\delta P} = \frac{-1}{V_b} \frac{\mathcal{L}}{1 + \mathcal{L}} \qquad \tau = \frac{\tau_0}{1 + \mathcal{L}} = \frac{C/G}{1 + \mathcal{L}}$$

TES Time Constant and Stability

Side-TES design was *too fast* electrically, TES stability requires:

1) Bandwidth requirement for bolometer stability: **TES bandwidth < 5.8 fMUX bandwidth**

2) Given RLC filter bandwidth, this implies:

$0.2 \text{ msec} < t_{\text{TES}} < 5 \text{ msec}$

3) TES speeds up as loop gain increases [$t_{TES} = t_0 / (1 + L)$], so assuming L ~ 10-30:

$6\ msec < t_0 < 50\ msec$

Side-TES had a $t_0 < 0.1$ msec! became unstable as soon as TES went into its transition.

Gold Ring added for heat capacity to slow down bolometer to to to to - 20 msec.

SPT-SZ TES Single Pixel

- Made at UC-Berkeley
- Used JPL spider-web absorber design;
 - suspended 1mm thick Silicon Nitride (${\rm SiN}$) substrate with 12 nm thick Gold (${\rm Au}$) absorber
- Replaced NTD Germanium with TES Aluminum/Titanium (Al/Ti) bilyaer;
 - Film thickness 40 nm Al, 80 nm Ti, gives a superconducting transition (Tc) of ~ 0.5 K
- "G" set by gold finger to TES

Alternative Gold Coupling Designs

Improved TES-Gold Coupling:

- 1) Centered TES and increased gold connectivity,
- 2) ${\rm Al/Ti}$ bi-layer underlies gold,
- 3) Superconducting "Al" leads were narrowed,

4) Oxide layer cleaned with etch before gold deposition.

Designs that intercepted TES improved thermal coupling to gold, but broadened transition and lowered loop gain

SPT-SZ Bolometer Array

Fabricated at UC-Berkeley by Sherry Cho and Erik Shirokoff (new faculty at U of Chicago)

An SPT-SZ 160 bolometer array; SiN substrate with gold absorber, and a Al/Ti transition edge sensor (TES) superconductor with a transition temperature of 500 mK

SQUID Bolometer Readout

Requirements:

- Low input impedance
- Low power dissipation
- High bandwidth
 ~100 MHz
- Low noise. At 4 K:
 - 3 pA/rtHz
 - 0.2 nV/rtHz

Implementation:

- Use DC SQUID as an ammeter (Superconducting Quantum Interference Device)
- Current->Flux->Voltage transducer

The South Pole is the best place in the world to observe the CMB

South Pole Environment

- High Altitude (~10,000 ft)
- Extremely Dry
 - Precipitable water vapor in winter is
 ~4x less than Chile, ~6x less than Hawaii
- Stable Atmosphere
 - •During 6-month night, the sky is ~30x more stable than ALMA-site in Chile

The South Pole has been home to worldleading CMB experiments for the past decade

> DASI (1999-2003) QUAD (2004-2007) KECK (2011-2016)

SPT (2007-2011) SPTpol (2012-2015) SPT3G (2016-?)

ACBAR (2001-2005)

BICEP (2006-2008) BICEP2 (2010-2012) BICEP3 (2015-?)

Completed Operating or Proposed

February 3, 2007: South Pole

~1 km

Dome and New Station

South Pole circa ~2007

MAPO (KECK, DASI, QUAD, and ACBAR experiments)

> IceCube (temporary) drill camp

Dark Sector Lab (BICEP/BICEP2 and

SPT/SPTpol)

SPT-SZ Optics

Off-axis Gregorian design

Fast optics = low-f number
 = large field-of-view =
 physically small pixels

 Secondary mirror and receiver in "cabin" that moves with the telescope

SPT-SZ Optics

SPT-SZ Focal Plane Optics

0.875"

- Light coupled to the detectors thru a:
 - 1) machined conical horn array,
 - 2) waveguide, and
 - 3) integrating cavity

• Frequency response set by waveguide at low frequencies, and metal-mesh filters at high-frequency.

- Waveguide also acts as RF seal to protect readout wiring

95 GHz Single Pixel PSBs

Engineer TES speed and responsivity

- Palladium-Gold (PdAu) added head capacity to slow detectors (ala SPT-SZ)
- Tested superconducting stripe and dot architecture on TES to "soften" R(T) curve and add responsivity high in the transition

CMB-S4: A CMB Stage 4 Experiment footprint overlap with DES, LSST, DESI, etc.

- 200,000 500,000 detectors on multiple platforms
- span 40 240 GHz for foreground removal
- target noise of ~1 uK-arcmin depth over half the sky
- < 3 arcmin resolution</p>
- **-** start ~2022

Lens-Coupled Antenna

- Contacting Si lens focuses beam pattern

- Surface of lens is analogous to horn aperture
- Used for Herschel/HIFI, ALMA/SIS, Polarbear instruments
- Antenna is small compared to lens
 - Increases area under the lens for filters, TESs, ...
- Anti-reflection (AR) coating needed
 - Challenging for broad-band; 2 or 3 layer epoxy ok

Single-layer AR/epoxy coated lenslet Spacer wafer with etched registration holes

Lenslet Array

Credit: Toki Suzuki, Erin Quealy

SPT-3G Detector Module Assembly

- ANL, U. Chicago, UC-Berkeley working in collaboration on 3-band, dual polarization pixel for SPT-3G
- Each SPT-3G detector module consists of 544 pixels, assembly will include:
 - >3,000 wire bonds per module
 - Packaging with silicon lenslet array

SPT-3G Prototype Array - Silicon Lenslet Array SPT-3G Focal Plane (6" wafer)

SPTpol Receiver

