

Properties of a Higgs Boson in the $H \rightarrow ZZ \rightarrow 4l$ Channel at CMS

US LHC Users Association Annual Meeting 2014

D. Austin Belknap on behalf of the CMS Collaboration

dabelknap@wisc.edu

University of Wisconsin – Madison Compact Muon Solenoid

14 November 2014

Introduction

- Since CMS and ATLAS announced its discovery in 2012, the focus has been measuring the properties of the Higgs boson
- ▶ Presented here are property measurements performed in the $H \rightarrow ZZ \rightarrow 4l$ channel at CMS
- We consider the final states 4μ , 4e, and $2e2\mu$
- Measurements of the mass, width, and spin-parity will be shown
- ► These measurements use the full dataset recorded by CMS of LHC *pp* collisions
 - $\mathcal{L}_{int} = 5.1 \text{ fb}^{-1}$ at 7 TeV and $\mathcal{L}_{int} = 19.7 \text{ fb}^{-1}$ at 8 TeV
- CMS Collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, CMS-HIG-13-002, Submitted to Phys. Rev. D, arXiv:1312.5353 [hep-ex]

Event Selection

Event Reconstruction and Selection

- We consider isolated muons and electrons coming from the primary vertex of 35
- Z1 Select the opposite-sign same-flavor lepton pair that is closest to the nominal Z mass
- Z_2 Of the remaining leptons, select the opposite-sign same-flavor lepton pair with the highest p_T scalar sum
- FSR If the inclusion of an FSR photon brings a Z candidates mass closer to nominal, keep it. \leq 1 photon may be assigned to a Z candidate.

- ► Require that the leptons have a relative isolation of < 0.4 with an isolation cone of $\Delta R < 0.4$
- Require m(ll) > 4 GeV on opposite-sign lepton pairs for QCD suppression
- Require $40 < m_{Z_1} < 120$ GeV and $12 < m_{Z_2} < 120$ GeV
- At least one lepton should have $p_T > 20$ GeV and another $p_T > 10$ GeV

Event Selection

Observables

- Masses: m_{Z_1}, m_{Z_2}, m_{4l}
- Event-by-event mass uncertainties
 - The momentum uncertainties from the four leptons are propagated into the four-lepton mass
 - $\mathcal{D}_m = \sigma_{m_{4l}}/m_{4l}$
- Kinematic Angles
 - θ^* Angle between Z_1 's trajectory and the beam axis
 - Φ_1 Angle between the Z_1 decay plane and the X decay plane
 - $\theta_{1,2}$ Angle between the negative lepton trajectory and the trajectory of its parent Z
 - Φ Angle between the decay planes of the two Zs

Mass and Width Measurements

- Above are the scans of the negative log-likelihood $-2\Delta \ln \mathcal{L}$ versus the mass m_H and width Γ_H
- Combined mass measurement:

 $m_H = 125.6 \pm 0.4 \text{ (stat.)} \pm 0.2 \text{ (syst.) GeV}$

- ▶ Upper limit of 3.4 GeV at 95% CL, with an expected upper limit of 2.8 GeV
- Measured width:

$$\Gamma_H = 0.0^{+1.3}_{-0.0} \text{ GeV}$$

Spin-Parity Measurement Strategy

• The standard model $J^P = 0^+$ hypothesis is tested against twelve alternate hypotheses

J^P	J ^P Production	$\int J^P$	J ^P Production
0^{-}	Any	2_{m}^{+}	$gg \to X$
0_{h}^{+}	Any	2_{m}^{+}	$q\bar{q} \to X$
1	$q\bar{q} \to X$	2_{m}^{+}	Any
1-	Any	2_{b}^{+}	$gg \to X$
1+	$q\bar{q} \to X$	2_{h}^{+}	$gg \to X$
1+	Any	2_h^{-}	$gg \to X$

- We use a mass window of $106 < m_{4l} < 141$ GeV for the spin-parity analysis
- A 2D log-likelihood ratio test statistic is used to separate the hypotheses

$$q = -2\ln\left[\frac{\mathcal{L}_{J^{P}}}{\mathcal{L}_{0^{+}}}\right]$$
(1)

- Where $\mathcal{L}_{2D}^{J^{p}} \equiv \mathcal{L}_{2D}^{J^{p}}(\mathcal{D}_{bkg}, \mathcal{D}_{J^{p}})$
- The discriminants are discussed on the next slide

Results Spin-Parity

Spin-Parity Hypothesis Separation

- The values of q are shown for the standard model and the alternate J^p hypotheses
- The expected distributions are created by generating MC toys assuming $m_H = 125.6 \text{ GeV}$
- The observed value is indicated by a black point

Results Spin-Parity

Spin-Parity Hypothesis Separation

J^P	J^P Production	Expected ($\mu = 1$)	Obs. 0^+	Obs. J ^P	CL_s
0-	Any	2.4σ (2.7σ)	-0.9σ	$+3.6\sigma$	0.09%
0_{h}^{+}	Any	$1.7\sigma (1.9\sigma)$	-0.0σ	$+1.8\sigma$	7.1%
1 ⁼	$q\bar{q} \rightarrow X$	2.6σ (2.7σ)	-1.4σ	$+4.8\sigma$	0.001%
1-	Any	2.6σ (2.6σ)	-1.7σ	$+4.9\sigma$	0.001%
1+	$q\bar{q} \rightarrow X$	2.1σ (2.3σ)	-1.5σ	$+4.1\sigma$	0.03%
1^{+}	Any	2.0σ (2.1σ)	-1.9σ	$+4.5\sigma$	0.01%
2_{m}^{+}	$gg \to X$	1.7σ (1.8σ)	-0.8σ	$+2.6\sigma$	1.9%
2_{m}^{+}	$q\bar{q} \rightarrow X$	$1.6\sigma (1.7\sigma)$	-1.6σ	$+3.6\sigma$	0.03%
2_{m}^{+}	Any	$1.5\sigma (1.5\sigma)$	-1.3σ	$+3.0\sigma$	1.4%
2_{h}^{+}	$gg \to X$	$1.6\sigma (1.8\sigma)$	-1.2σ	$+3.1\sigma$	0.9%
$2_{h}^{\tilde{+}}$	$gg \to X$	3.7σ (4.0σ)	$+1.8\sigma$	$+1.9\sigma$	3.1%
$2^{\frac{n}{h}}_{h}$	$gg \to X$	4.0σ (4.5σ)	$+1.0\sigma$	$+3.0\sigma$	1.7%

- The expected separation is shown when the signal strength is calculated from data, and when it is fixed to 1
- The observed values reflect the consistency with the 0⁺ or J^P models where the signal strength is allowed to float
- All cases are consistent with the standard model hypothesis

Summary

Summary

- ▶ Presented are the CMS measurements of mass, width, and spin-parity in $H \rightarrow ZZ \rightarrow 4l$ (CMS-HIG-13-002)
- Utilizing 5.1 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV CMS data
- Mass
 - $m_H = 125.6 \pm 0.4 \text{ (stat.)} \pm 0.2 \text{ (syst.) GeV}$
- Width
 - $\Gamma_H = 0.0^{+1.3}_{-0.0} \text{ GeV}$
 - Upper limit of 3.4 GeV at 95% CL (2.8 GeV expected)
- Spin-Parity
 - For all hypotheses tested, the CMS data are consistent with the standard model pure scalar hypothesis
 - Pseudoscalar and spin-1 hypotheses tested are excluded at 99% CL or higher
 - All spin-2 hypotheses tested are excluded at 95% CL or higher

The production and decay properties of the observed boson in the 4l final state are consistent with the standard model expectations

Backup Slides

Preselection and Physics Objects

Triggers and Datasets

- Dimuon, Dielectron, and Muon + Electron datasets from the 7 and 8 TeV LHC run periods
- ► Corresponds to 5.1 fb⁻¹ at 7 TeV, and 19.7 fb⁻¹ at 8 TeV
- We use Double Muon, Double Electron, Triple Electron, and Electron + Muon high-level triggers

Electrons

- Required to have $p_T > 7$ GeV and $|\eta| < 2.5$
- Includes identification using a multivariate method, and energy corrections/calibrations
- Required to come from the primary vertex

Muons

- Required to have $p_T > 5$ GeV and $|\eta| < 2.4$
- Includes energy corrections/calibrations
- Required to come from the primary vertex
- Final State Radiation (FSR)
 - The decay of a Z boson can be associated with final-state radiation photons $(Z \rightarrow l^+ l^- \gamma)$, and we wish to recover the energy from the radiated photon
 - ► Isolated photons are selected, and assigned to their closest preselected lepton by $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

• The mass and width measurements are performed using a likelihood fit with a 3D p.d.f.

$$\mathcal{L}_{3D}^{m,\Gamma}\left(m_{4l},\mathcal{D}_m,\mathcal{D}_{bkg}^{kin}\right) = \mathcal{P}(m_{4l}|m_H,\Gamma,\mathcal{D}_m)\mathcal{P}(\mathcal{D}_m|m_{4l}) \times \mathcal{P}(\mathcal{D}_{bkg}^{kin}|m_{4l}) \quad (2)$$

 \blacktriangleright We use a kinematic discriminant \mathcal{D}_{bkg}^{kin} to discriminate against the background

$$\mathcal{D}_{bkg}^{kin} = \frac{\mathcal{P}_{0^+}^{kin}}{\mathcal{P}_{0^+}^{kin} + \mathcal{P}_{bkg}^{kin}} = \left[1 + \frac{\mathcal{P}_{bkg}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4l})}{\mathcal{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4l})}\right]^{-1}$$
(3)

• Where $\vec{\Omega} = \{\theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$, and \mathcal{D}_{bkg}^{kin} does not carry discrimination power based on m_{4l}

Spin-Parity Models

General decay amplitude for spin-0 boson to two vectors (v is the SM VEV)

$$\begin{aligned} A(H \to ZZ) &= v^{-1} \left(a_1 \cdot m_Z^2 \epsilon_1^* \epsilon_2^* + a_2 \cdot f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 \cdot f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right) \\ f^{(i),\mu\nu} &= \epsilon_i^{\mu} q_i^{\nu} - \epsilon_i^{\nu} q_i^{\mu} \\ \tilde{f}^{(i)}_{\mu\nu} &= 1/2 \epsilon_{\mu\nu\alpha\beta} f^{(i),\alpha\beta} = \epsilon_{\mu\nu\alpha\beta} \epsilon_i^{\alpha} q_i^{\beta} \end{aligned}$$

Description

- 0^{+} SM pure scalar (a_1 dominates)
- Pseudoscalar (a_3 dominates) 0^{-}
- 0_{h}^{+} Non-SM scalar with higher-dimension operators (a_2 dominates)
- 1⁺ Pseudovector
- 1^{-} Vector
- Graviton-like with minimal couplings
- 2_{b}^{+} 2_{b}^{+} 2_{h}^{+} 2_{h}^{-} Graviton-like where SM fields propogate in the bulk of extra dimensions
- Tensor with higher-dimension operators
- Pseudotensor with higher-dimension operators

Spin-Parity Discriminants

We build a kinematic discriminant to separate the signal from background, which includes the discrimination power of m_{4l}

$$\mathcal{D}_{bkg} = \left[1 + \frac{\mathcal{P}_{bkg}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4l}) \times \mathcal{P}_{bkg}^{mass}(m_{4l})}{\mathcal{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4l}) \times \mathcal{P}_{sig}^{mass}(m_{4l} | m_{0^+})}\right]^{-1}$$
(4)

> We build a similar discriminant to separate the different signal hypotheses

$$\mathcal{D}_{J^{P}} = \left[1 + \frac{\mathcal{P}_{J^{P}}^{kin}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4l})}{\mathcal{P}_{0^{+}}^{kin}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4l})} \right]^{-1}$$
(5)

- For spin-1 and spin-2 hypotheses, the angles $\cos \theta^*$ and Φ_1 depend on the production mode
- To remove this dependence, we integrate out those angles, and make the following replacements in the discriminants

$$\mathcal{P}_{bkg}^{kin} \to \frac{1}{4\pi} \int d\Phi_1 \, d\cos\theta^* \, \mathcal{P}_{bkg}^{kin} \tag{6}$$

$$\mathcal{P}_{J^{\rho}}^{kin} \to \frac{1}{4\pi} \int d\Phi_1 \, d\cos\theta^* \, \mathcal{P}_{J^{\rho}}^{kin} \tag{7}$$

Angles-Only Spin-Parity Analysis

- As an alternate cross-check, the spin-parity analysis can also be performed using only a subset of the kinematic angles (CMS-approved D.A.B. PhD thesis analysis)
- > We build a log-liklihood ratio test statistic as before, with a 3D liklihood

$$\mathcal{L}_{3D} \equiv \mathcal{L}_{3D} \left(P_2(\cos \theta_1), P_2(\cos \theta_2), \cos(2\Phi) \right) \tag{8}$$

- The choice of angles is outlined in: Modak, Sahoo, Sinha, and Cheng, Inferring the nature of the boson at 125-126 GeV, arXiv:1301.5404 [hep-ph]
- The 3D p.d.f. used to compute the likelihood is an $8 \times 8 \times 8$ template populated by Monte Carlo simulation for both signal and background (assuming $m_H = 126$ GeV)
- Since the m_{4l} shape is not used here, a smaller mass window is utilized: 121.5 < m_{4l} < 130.5 GeV
- Hypotheses tested: 0^- , 0^+_h , $2^+_m(gg)$, and $2^+_m(q\bar{q})$
- Uses 19.7 fb^{-1} of 8 TeV data only

Angles-Only Spin-Parity

Angles-Only Spin-Parity Analysis Results

The values of q are shown for the standard model and the alternate hypothesis, and the arrow indicates the observed value

Belknap (UW-Madison, CMS)

Angles-Only Spin-Parity Analysis Results

J ^P	J ^P Production	Expected	Obs. 0 ⁺	Obs. J ^P	CL_{s}		
0^{-}	Any	1.83σ	-0.17σ	+2.04 σ	4.8%		
0_{h}^{+}	Any	1.33σ	$+1.73\sigma$	-0.30σ	65%		
2_{m}^{+}	$gg \to X$	1.11σ	-0.62σ	$+1.77\sigma$	14%		
2_{m}^{+}	$q\bar{q} \to X$	1.10σ	$+1.08\sigma$	-0.11σ	63%		

(Belknap Ph.D. Thesis)

- > The expected separation is shown when the signal strength is calculated from data
- The observed values reflect the consistency with the 0⁺ or J^P models where the signal strength is allowed to float
- Using only three of the angles is not nearly as powerful as using all five angles with the masses
- Results are consistent with the previous spin-parity results