Search for Higgs boson pair production at the LHC using the $hh \to \tau \tau bb$ channel

Puja Saha

Northern Illinois University

US-LUA annual meeting 14th of November 2014

イロン イロン イヨン イヨン 三日

1/14

Overview

Production of Di-Higgs: Motivation Di-Higgs decay modes 8TeV analysis of $h \rightarrow \tau \tau$ τ identification τ channels and Backgrounds 8TeV analysis on $hh \rightarrow bb\gamma\gamma$ 8TeV analysis on $hh \rightarrow bbbb$ Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2 Backgrounds for $hh \rightarrow \tau \tau bb$ Background cross sections from 8 TeV to 13 TeV Background modeling Trigger General issues in Run 2

Production of Di-Higgs: Motivation

- To investigate the possibility of BSM di-Higgs production.
- ▶ In SM, di-Higgs production is a non-resonant process. $\sigma(pp \rightarrow hh) = 33.86$ fb at $\sqrt{s} = 14$ TeV, $m_h = 125$ GeV, too small for it to be observable at the LHC within next decade

- ► TeV-scale (BSM) resonances can decay to di-Higgs: H → hh in 2HDM, RS kk Graviton→ hh
- Enhancement through (BSM) non-resonant di-Higgs production

Di-Higgs decay modes

- hh → ττbb channel contains leptons in the final state so will be easier to trigger on and it also has high branching ratio
- If one of the two h's decays into pair of τ's and the other into a pair of b's then the signature is item-wise identical to in tt
 production where t → H⁺b
 t → bW and H⁺ → τν
 W → Iν

イロト イポト イヨト イヨト

8 TeV analysis of $h \rightarrow \tau \tau$ channel: τ identification

- τ identification:
 - Leptonic decay(τ_{lep}): (BR:35.3 %)

$$\tau^+ \to \mu^+ \nu \nu \tag{1}$$

$$\tau^+ \to e^+ \nu \nu \tag{2}$$

- ► Hardonic decay(\(\tau_{had}\)):
 - One prong decay: (BR:49.5 %)
 - $\tau^+ \to \pi^+ \nu (BR: 10.9\%)$ (3)

$$\tau^+ \to \pi^0 \pi^+ \nu (BR: 25.5\%)$$
 (4)

$$\pi^+ \to \pi^+ \pi^0 \pi^0 \nu (BR: 9.5\%)$$
(5)

Three prong decay: (BR:15.2 %)

$$\tau^+ \to \pi^+ \pi^+ \pi^- \nu (BR : 9.3\%)$$
 (6)

$$\tau^+ \to \pi^+ \pi^- \pi^0 \nu (BR: 4.6\%) \tag{7}$$

5/14

8 TeV analysis of $h \rightarrow \tau \tau$ channel: τ channels and Backgrounds

- $h \rightarrow \tau \tau$:Background:
 - $Z \to \tau \tau$
 - ▶ For $\tau_{lep}\tau_{lep}$ channel: multijet, $Z \rightarrow ee$, $Z \rightarrow \mu\mu$, W+jets, $t\bar{t}(l\nu b l\nu b)$, W^+W^- , ZZ, $W^{\pm}Z$, $h \rightarrow WW \rightarrow l\nu l\nu$
 - For $au_{lep} au_{had}$ channel:Z o ee , $Z o \mu\mu$, $t\bar{t}(l\nu bqqb)$, W+jets
- ▶ For $hh \rightarrow \tau \tau bb$ we would not consider the $\tau_{lep} \tau_{lep}$ channel for low branching ratio

8TeV analysis of $hh \rightarrow bb\gamma\gamma$ arXiv:1406.5053

8TeV analysis of $hh \rightarrow bbbb$ http://cds.cern.ch/record/1666518

The observed upper limit on σ(pp → G^{*}) × BR(G^{*} → HH → bbbb) at the 95 % CL range from 100 fb at 500 GeV to 7 fb at 1 TeV. Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2: Backgrounds for $hh \rightarrow \tau \tau bb$

- ► The dominant background will be top pair production and decaying into $tt \rightarrow bb\tau\tau$ channel
- Next dominant background may be Z associated production of Higgs where Z → ττ and h → bb or Z → bb and h → ττ
- ▶ Other possible background contribution can come from single Higgs production associated with *bb* , where $h \rightarrow \tau \tau$
- QCD jets and Z+jets

Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2: Background cross sections from 8 TeV to 13 TeV

Dominant background is top pair production:

$$\sigma(8 \text{ TeV}) = 255 \text{ pb} \tag{8}$$

$$\sigma(13 \text{ TeV}) = 853 \text{ pb} \tag{9}$$

ZH production cross section (at Higgs mass 125 GeV) :

$$\sigma(8 \text{ TeV}) = 0.42 \text{ pb} \tag{10}$$

$$\sigma(13 \text{ TeV}) = 0.87 \text{ pb}$$
 (11)

< □ > < @ > < 글 > < 글 > 글 ♡ < < 10/14 Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2: Background modeling

- Top background: data-based estimate from Run2.
- Multi-jet events: matrix method
- Events with true τ : embedding In data sample of $Z \rightarrow \mu\mu$ muon tracks and associated calorimeter cells are replaced by τ leptons from simulated $Z \rightarrow \tau\tau$ sample with the same kinematics.
- Events with $e/\mu \rightarrow \tau$ fakes: simulation
- QCD jets $\rightarrow \tau$ fakes: data (fake factor method)

Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2: Trigger

- Trigger on h → ττ from Run 1 (http://cds.cern.ch/record/1954724):
 - ▶ $h \rightarrow \tau_{had} \tau_{lep}$: Exactly one electron with $E_T > 24$ GeV or one muon with $p_T > 24$ GeV and one oppositely charged τ_{had} with $p_T > 20$ GeV
 - h → τ_{had}τ_{had}: Two identified oppositely charged τ_{had} candidates p_T > 20GeV and p_T > 29 GeV are required
- Run 2:
 - FTK will aid τ trigger chains (note: Fast TracKer (FTK) is an electronics system that rapidly finds and fits tracks in ATLAS inner detector silicon layer (pixel and SCT) for every event that passes the Level-1 trigger)

Prospects of $hh \rightarrow \tau \tau bb$ analysis in Run 2: General issues

- For high mass resonances, Higgs decay products start to merge, problems for objects ID and reconstruction
- ▶ In highly boosted regime τ pair and b pair can merge. Below $\triangle R = 0.4 \tau$ reconstruction algorithm will have to be revised
- Dedicated tau-findings for high mass-resonances will be essential
- At high CM energy and high instantaneous luminosity, pile up will be worse and more fake \(\tau\)s: need dedicated trigger for boosted pair
- Significant improvement in tau ID will keep the fake tau background same

References

- Search for Higgs Boson Pair Production in the γγbb Final State using pp Collision Data at √s = 8 TeV from the ATLAS Detector arxiv.org/pdf/1406.5053v2.pdf
- A search for resonant Higgs-pair production in the bbbb final state in pp collision at √(s) = 8 TeV http://cds.cern.ch/record/1666518
- Evidence for Higgs boson Yukawa coupling in the $H \rightarrow \tau \tau$ decay mode with the ALTAS detector http://cds.cern.ch/record/1954724