

# Search for lepton jets using 8TeV data with the ATLAS detector

### Harisankar Namasivayam

University of Texas at Dallas

USLUA 2014 Annual Meeting Argonne National Lab 12 – 14 November 2014





- Motivation
- Lepton jet definition
- Event selection
- Signal prediction and background estimation
- Results



### Astrophysical observations – Positron excess

AMS PRL 113, 121101 (2014), PAMELA, Nature 458 (2009) 607

### Production at LHC

- Higgs portal
  - 10% BR to hidden dark sector
  - $f_{d2} dark$  fermion
  - HLSP Hidden lightest stable particle
  - $\gamma_d$  dark photon





### Astrophysical observations – Positron excess

AMS PRL 113, 121101 (2014), PAMELA, Nature 458 (2009) 607

### Production at LHC

- Higgs portal
  - 10% BR to hidden dark sector
  - $f_{d2} dark$  fermion
  - HLSP Hidden lightest stable particle
  - $\gamma_d$  dark photon
- SUSY portal
  - $N_1 Neutralino$
  - $\gamma_d$  dark photon



Hari Namasivayam



- Dark photon  $(\gamma_d)$  kinetically mixes  $(\varepsilon)$  with the Standard Model (SM) photon.
- Signature collimated pairs of leptons – lepton jets.







- Dark photon  $(\gamma_d)$  kinetically mixes  $(\varepsilon)$  with the Standard Model (SM) photon.
- Signature collimated pairs of leptons – lepton jets.
- Mass of the dark photon:  $m_{\gamma d}$ :100 – 2000 MeV







- Dark photon  $(\gamma_d)$  kinetically mixes  $(\varepsilon)$  with the Standard Model (SM) photon.
- Signature collimated pairs of leptons – lepton jets.
- Mass of the dark photon:  $m_{\gamma d}$ :100 – 2000 MeV
- Prompt lepton jets:  $\varepsilon \sim 10^{-3} 10^{-4}$ 
  - In progress (ATL-COM-PHYS-2014-454)
- Non-prompt lepton jets:  $\varepsilon \sim 10^{-5} 10^{-7}$ 
  - Submitted to JHEP (arXiv:1409.0746v2)







# Lepton Jet definition

- Electron LJ (eLJ)
  - Two inner detector (ID) tracks matched to one or two EM clusters.
  - Tracks within  $\Delta R$  (=0.5) cone.
- Muon LJ (muLJ)
  - $> \ge$  two muons with matched inner detector tracks within  $\Delta R$  (=0.5) cone.
- Mixed LJ (emuLJ)
  - $\geq$  one EM cluster with  $\geq$  one ID track
  - $\geq$  one muons with  $\geq$  one ID track.

EM - Electromagnetic

No inner detector track requirement for the non-prompt lepton jets. arXiv:1409.0746v2

- Data: 20.3 fb<sup>-1</sup> 8 TeV data.
- Backgrounds: QCD, γ+jets, dibosons(WW, WZ, ZZ, γγ), tt, Z+jets, W+jets, Drell-Yan



### Signal selection

- Triggers
  - Prompt lepton jets: Single electron OR two EM cluster, single OR multi-muon with lower threshold.
  - <u>Non-prompt lepton jets:</u> Calorimeter and MS only trigger.

MS- Muon Spectormeter

- Preselection
  - Quality events.
  - Primary vertex with  $\geq$  2 lepton jets.
  - Di-lepton mass < 2 GeV.</li>
  - Electron and muon,  $p_T > 10$  GeV, Id0l < 1mm (prompt only).
  - MS Muons Id0l < 200mm, Iz0l < 270mm (non-prompt only)</li>
- Background rejection
  - Optimized discriminating variables.

| Electron channel | eLJ – eLJ     |
|------------------|---------------|
| Muon channel     | muLJ – muLJ   |
| Mixed channel    | eLJ – muLJ    |
|                  | eLJ – emuLJ   |
|                  | muLJ – emuLJ  |
|                  | emuLJ - emuLJ |





# **Background estimation**

### Data-driven method

- Two relatively uncorrelated variables.
- A signal region.
- B, C, D control regions.
- B, C and D content used to estimate the background in A.

Prompt lepton jet analysis is still blinded



# Analysis sensitivity and background estimation

#### Non-prompt analysis

#### Background estimation

|                      | Event        |
|----------------------|--------------|
| Background estimated | 41 ± 12 ± 29 |
| Data (observed)      | 29           |

arXiv:1409.0746v2

#### Higgs portal – MC prediction 10% BR to dark sector

| m <sub>γd</sub> = 400 MeV | Events  |
|---------------------------|---------|
| n <sub>γd</sub> = 2       | 60 ± 4  |
| $n_{\gamma d} = 4$        | 104 ± 5 |

arXiv:1409.0746v2

#### Prompt analysis

#### **Background estimation**

| Blinded Cha | nnel | Background<br>estimate in region A |
|-------------|------|------------------------------------|
| eLJ         | -eLJ | 3.1 ± 0.8                          |

ATL-COM-PHYS-2014-454

#### SUSY signal portal – MC prediction 700 GeV squarks – 64fb at 8TeV

| Signal sample              | Events     |
|----------------------------|------------|
| m <sub>γd</sub> = 100 MeV  | 35.8 ± 0.9 |
| m <sub>γd</sub> = 300 MeV  | 15.0 ± 0.6 |
| m <sub>γd</sub> = 1200 MeV | 6.0 ± 0.2  |

ATL-COM-PHYS-2014-454



### Results

- Result is interpreted in the 2D plane of ε and the mass of the dark photon.
- ATLAS result is shown for the non-prompt lepton-jet analysis.
- Prompt lepton-jet analysis is still blinded.





### Results

- Result is interpreted in the 2D plane of ε and the mass of the dark photon.
- ATLAS result is shown for the non-prompt lepton-jet analysis.
- Prompt lepton-jet analysis is still blinded.





### Conclusion

- Searches are performed for prompt and non-prompt lepton jets.
- Complementary in covering dark parameter space.
- Non-prompt search submitted to JHEP (arXiv:1409.0746v2)
  - 8 TeV ATLAS data
  - $\varepsilon \sim 10^{-5} 10^{-7}$
  - $-m_{\gamma d} = 150 1500 \text{ MeV}$
- Prompt lepton jet search
  - 7 TeV ATLAS data (published PLB 719 (2013) 299-317),  $\varepsilon \sim 10^{-3} 10^{-4}$
  - 8 TeV ATLAS data waiting to unblind stay tuned!
- No lepton-jet excess observed.





### Backup

### Samples and objects



#### **Objects - preselection**

- ID Tracks
  - $p_T > 5 \text{ GeV}, |\eta| < 2.5$
  - Blayer hits ≥ 1
  - Pix hits  $\geq 2$
  - Pix + SCT hits  $\geq$  7

- MUID muons
  - (following MCP group recommendation)
    - $p_T > 5 \text{ GeV}, |\eta| < 2.5$
    - isSegmentTagged or isCombined

- EM Cluster
  - $p_{T} > 10 \text{ GeV}$
  - lη l < 2.47, excluding fiducial region (1.37 < lη l < 1.52)
  - Author 1 or 3

٠

### Data and Monte Carlo



### <u>Data</u>

- 20.3 fb<sup>-1</sup> of 8 TeV data
- Egamma stream
- Muon stream
- JetTauEtmiss (for evaluating QCD background)

### Signal MC- SUSY

- Mass of  $\gamma_{d_{i}} m_{\gamma d} = 100, 300, 500, 700, 900, 1200, 1500, 2000 MeV.$
- Number of  $\gamma_d$  in the final state,  $n_{\gamma d} = 2, 4$ .

### Signal MC- Higgs

•  $m_{\rm H} = 125 \; {\rm GeV}, \; m_{\gamma d} = 400 \; {\rm MeV}, \; n_{\gamma d} = 2, \; 4.$ 

### Background MC

• QCD, γ+jets, dibosons(WW, WZ, ZZ, γγ), tt, Z+jets, W+jets, Drell-Yan



# Prompt eLl discriminating variables

- Blue shade signal MC
- Red shades background MC

Used part of QCD di-jet data for cut optimization

ATL-COM-PHYS-2014-454







# **Background estimation**

#### Data-driven method

- Region A signal region.
- Regions B, C, D control regions.
- Two relatively uncorrelated variables.
- Data driven background estimation
  - Use number of events in regions B, C and D to estimate the amount of background in region A.







Hari Namasivayam

USLUA 2014 meeting