

1

Search for W' \rightarrow tb \rightarrow qqbb Decays with the ATLAS detector

Ho Ling Li

November 14, 2014

- What is W'?
 - A heavy, Standard-Model-like W gauge boson (same charge, spin)
 - Consequence of physics beyond the Standard Model
 - Extra Dimension model, a new gauge sector, composite boson
 - Possible search channels: W' \rightarrow Iv (I = e, μ), W' \rightarrow WZ, W' \rightarrow tb
 - W' \rightarrow tb: search for new physics in the 3rd generation
- W' \rightarrow tb channel
 - Before August 2014, only W' \rightarrow tb \rightarrow Ivbb published
 - ATLAS limits (20.3 fb⁻¹): 1.70 TeV (W'_L) and 1.92 TeV (W'_R)

proton

proton

- CMS: http://arxiv.org/abs/1402.2176
- First result on W' \rightarrow tb \rightarrow qqbb
 - Available on http://arxiv.org/abs/1408.0886
 - Advantages
 - Br(t \rightarrow qqb) ~ 3 x Br(t \rightarrow lvb)
 - Able to reconstruct a sharp W' mass peak
 - Sensitivity maintained for high $m_{w^{\prime}}$
 - Disadvantage
 - Enormous QCD background

Search strategy for W' \rightarrow tb \rightarrow qqbb

- Electron and muon veto applied
- Search for a bump in m_{tb} spectrum
 - Start the search at W' mass > 1.5 TeV

Hadronic top reconstruction

- Want to differentiate jets from hadronic top decays from QCD
 - Top jet: high mass (173 GeV) and contains 3 showers (q, q, b)
- Search for W' with mass greater than 1.5 TeV
 - Top has high $\mathsf{P}_{_{T}} \to$ decay products tend to merge
 - Reconstruct top decay products by large-R (radius para. R=1.0) jets
 - ATLAS standard jets have radius parameter R=0.4
 - Use jet substructure information to distinguish top jets from light jets

Jet substructure variables for top-tagging

- Splitting scale $\sqrt{d_{12}}$, ratios of n-subjettiness $\tau_{_{21}}$ and $\tau_{_{32}}$ are used to distinguish top jets and light jets
 - Splitting scale $\sqrt{d_{12}}$

Measure the dR between them and their pTs.

$$\sqrt{d_{12}} = \min(P_T(1), P_T(2)) \times \Delta R(1,2)$$

Jet substructure variables for top-tagging

- Ratio of n-subjettiness τ_{32} and τ_{21}
 - Ratio related to number of showers inside the jet

Statistical strategy

- Signal parametrized by analytic functions
- Background obtained from fitting data with analytic functions
 - Functions tested on data-driven background sample before unblinding
- Unbinned likelihood fit to m_{tb} distribution
 - Determine excess from probability for signal+background hypothesis
 - If no excess, set 95% Confidence Level limits

- Observed (expected) limits on cross section x Br assuming g_{SM}
 - Mass of W'_R > 1.76 (1.85) TeV
- Set limits on g'/g_{SM} up to 2 as a function of $m_{w'}$
 - At $g'/g_{SM} = 2$, mass limit is 2.29
 - At $m_{W'}$ = 1.5 TeV, g'/g_{SM} < 0.55

- Currently, comparable expected limits
- Hadronic: flat sensitivity up to $m_{w'} \sim 3 \text{ TeV}$

Summary and outlook

- First result on W' \rightarrow tb in the decay channel of t \rightarrow qqb
 - Dijets events with one jet top-tagged and the other one b-tagged
- Developed new and simple top-tagger with high performance
- Limits on cross section x Br (g' = g_{SM})
 - Mass of $W'_R > 1.76 \text{ TeV}$
- Limits on g'/g $_{\rm SM}$ as a function of $\rm m_{\rm W'}$
 - At g'/g_{SM} = 2, mass limit is 2.29
- Outlook
 - Sensitivity up to W' mass ~ 3 TeV
 - More important as LHC increases to 13 14 TeV for Run II (2015 2018)
- Thank you!

backup

• Shown compatible performance in <u>ATLAS top tagger performance note</u>

• Consistent with SM

Results: W'

- Observed (expected) limits on cross section x Br assuming g_{SM}
 - Mass of W'₁ > 1.68 (1.63) TeV
- Set limits on g'/g_{SM} up to 2 as a function of $m_{w'}$
 - At g'/g_{SM} = 2, mass limit is 2.18
 - At $m_{W'}$ = 1.5 TeV, g'/g_{SM} < 0.70

