

Physics Beyond Higgs: Searches for Vector-like quarks at CMS

Sadia Khalil US LUA Meeting Nov 12-14, 2014 Argonne National Lab, IL, USA

 Top Partners are what cancels the top loop divergence in m_H and are light in all Natural Theories

 Top Partners are what cancels the top loop divergence in m_H and are light in all Natural Theories

h

h

h

c

 Light Higgs plus Low Tuning need light Partners susy

2

h

b)

bosonic partners(stops)

h

a)

h

Top Partners are what cancels the top loop divergence in m_H and are light in all Natural Theories h h h h h h a) b) cLight Higgs plus Low Tuning need light Partners **SUSY** bosonic partners(stops) Mrs. SXXY EW scale⁻¹ Mr. Higgs Scalar precipice GUT scale⁻¹ Planck scale⁻¹ (Andreas Hoecker) Fundamental scalar 2

length scale

Top Partners are what cancels the top loop divergence in m_H and are light in all Natural Theories h h h h h b) a) Light Higgs plus Low Tuning need light Partners **SUSY** X-dim, Little Higgs, Composite Higgs... bosonic partners(stops) fermionic partners Mrs. SWY Mr. VLO Let's not miss the possibility EW scale⁻¹ EW scale⁻¹ Mr. Higgs Mr. Higgs Scalar precipice Scalar precipice GUT scale⁻¹ GUT scale⁻¹ Planck scale⁻¹ Planck scale⁻¹ (Andreas Hoecker) (Andreas Hoecker) http://arxiv.org/abs/1205.0013 Fundamental scalar 2 Fundamental scalar http://arxiv.org/abs/1211.5663 length scale length scale

Introduction

- All Standard Model fermions are <u>chiral</u>: their masses are not gauge invariant, and arise from the Higgs coupling. $J^{\mu+} = J^{\mu+}_{I} = \bar{u}\gamma^{\mu}(1-\gamma^{5})d = V A$
- Vectorlike (i.e.non-chiral) fermions a new form of matter.
 - Masses allowed by $SU(3)_c \times SU(2)_W \times U(1)_Y$ gauge symmetry, \Rightarrow naturally heavier than the t quark. $J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \bar{u}\gamma^{\mu}d = V$
 - Produced as

Run1 Searches

T'(5/3)(dilep,ss) $T' \rightarrow tZ(semilep+lep)$ T'→tH(semilep+lep) Vector-like T T'→bW(semilep+lep) $T' \rightarrow tH(H \rightarrow \gamma \gamma)$ T'→tH(hadronic) B'→bZ(multilep) B'→bH(multilep) B'→tW(multilep) B'→tW(ss-dilep) Vector-like B' B'→bZ(dilep) B'→bZ(semilep) B'→bH(semilep) B'→tW(semilep) B'→bH(hadronic) 0 0.2 0.4 0.6 0.8 1.2 1.4 Excluded Mass (TeV)

95% CL Exclusions (TeV)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

- LHC Run1 focused on pair production of VLQ, with typical constraints of m_Q~ 750 GeV
- Searches have been performed in all the full phase space of a triangle with all possible combinations of B.R

Michael Peskin's representation

Common procedures

• Strategy:

 Look for excesses over a known background in high S_T(sum p_T of final decay products) and reconstructed mass tails

B2G-14-002

Common procedures

• Strategy:

 Look for excesses over a known background in high S_T(sum p_T of final decay products) and reconstructed mass tails

• Jet Substructure tagging tools:

- The New Physics searches often imply to look for massive objects
 - boosted decay products => merged jets
 - tag tops, W/Z and Higgs

B2G-14-002

Common procedures

• Strategy:

Look for excesses over a known background in high S_T (sum p_T of final decay products) and reconstructed mass tails

• Jet Substructure tagging tools:

- The New Physics searches often imply to look for massive objects
 - boosted decay products => merged jets
 - tag tops, W/Z and Higgs

B2G-14-002

CMS Preliminary, 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV

Selected analyses

T_{2/3} quark, leptons+jets

T→bW, tZ, tH

- **Single lepton**: 1 isolated lepton (e/mu)
- Hadronic W-tag and top-tagging
- Strategy: BDT
- **0 W:** N_{iets} , N_{btags} , H_T , MET, lepton p_T , $p_{T,i3}$ and $p_{T,i4}$
- ≥ 1 W: 0 W variables + N_{Wjet}, p_{T,WJet}, N_{topJets}
- **<u>Multileptons</u>**: Categorized into four mutually exclusive channels optimized using S_T , H_T , min(m_{lb}), $N_{Jets. biets}$.
- OS dilepton offZ (dominant signal = $T \rightarrow bW$)
- OS dilepton onZ (dominant signal = $T \rightarrow tZ$)
- SS dilepton (dominant signal = $T \rightarrow tZ$, tH)
- Trileptons (dominant signal = $T \rightarrow tZ$, tH)
- Strategy: Binned Likelihood fit for 12 different channels
- OS onZ, OS offZ, SS x ee, eµ, µµ = 9
- Trileptons = eee, $\mu\mu\mu$ +ee μ , $\mu\mu\mu$ = 3

T_{2/3} quark, inclusive search

Physics Letters B 729 (2014) 149

CMS-PAS-B2G-12-015

Combine limits: A mass bound of [687, 782] GeV is set at 95% CL for all possible BR.

Observed Expected CMS preliminary $\sqrt{s} = 8 \text{ TeV} 19.6 \text{ fb}^{-1}$ CMS preliminary $\sqrt{s} = 8 \text{ TeV} 19.6 \text{ fb}^{-1}$ BR(bW) BR(bW) **Observed T Quark Mass Limit [GeV]** Expected T Quark Mass Limit [GeV] 785 700 800 800 0.8 750 750 0.6 0.6 700 -700 650 650 0.2 600 600 0 0 BR(tZ) BR(tZ) BR(tH) BR(tH) 782 813 706 770

Benchmark point, tW:bZ:bH=0.50:0.25:0.25:696(Obs), 773(Exp)

T_{2/3} quark, all hadronic

T→tH, H→bb

- Special substructure analysis using subject b-tagging
 - Tag tops and Higgs using HEP top-tagger (cone size = 1.5)
 - H_T >720 GeV, sub-jets in H_T have p_T >150 GeV
 - In addition to double b-tagging, require m_H>60 GeV

B-1/3 quark, l+jets

B→tW, bZ, bH

CMS-PAS-B2G-12-019

- Selection
 - One isolated lepton (muon or electron)
 - \geq 4 high p_T jets, \geq 1 b-jet, MET > 20 GeV
 - Boosted jets consistent with W, Z, H jets:
 - → p_T>200 GeV, 50 < M_{jet} < 150 GeV

• Strategy

 Events are categorized by number of Vtagged jets (0, 1 and ≥2 V-tag categories) in S_T bins.

$$S_T = p_T^l + \Sigma p_T^{jet} + E_T^{miss}$$

Similar bins for muon channel

B-1/3 quark, l+jets

CMS-PAS-B2G-12-019

Combine e+µ limits: A mass bound of [582, 732] GeV is set at 95% CL for all possible BR.

Benchmark point, tW:bZ:bH=0.50:0.25:0.25:700(Obs), 689(Exp)

П

B-1/3 quark, multileptons

- Event selection:
 - ► ≥ 3 isolated leptons ($\tau_l = e \text{ or } \mu$, ≤1 τ_h)
- Classification:
 - number of leptons, taus, b-jets
 - # of opposite-sign same flavor (OSSF)
 - OSSF0 = $\mu^{+}\mu^{+}e^{-}$
 - OSSF1 = $\mu^+\mu^-\mu^-$ and $\mu^+\mu^-e^-$
 - OSSF2 = $\mu^+\mu^-e^-e^+$
 - on/off Z: OSSF in Z window (75–105 GeV)?
- Use S_T in multiple exclusive channels

CMS-PAS-B2G-13-003

B-1/3 quark, multileptons

B→tW, bZ, bH

CMS-PAS-B2G-13-003

A mass bound of [520, 785] GeV is set at 95% CL for all possible BR.

Run 2 Preparation

- Single production is extremely important to target higher masses due to its relatively high x-section
 - e.g, Doublet (Y,B) production which can explain the deviation in Z->bb forwardbackward asymmetry, if b-quarks couples to (Y,B)

Luca Panitti

Pair Production

T pair production \longrightarrow 6 possible decays: W^+j W^+b Zj Zt Hj Ht for a constraint of decays into SM particles!

B pair production \longrightarrow 6 possible decays: W^-j W^-t Zj Zb Hj Hb

36 possible combinations of decays into SM particles

14

X pair production $\longrightarrow W^+j \quad W^+t$

4 combinations

Y pair production $\longrightarrow W^-j \quad W^-b$

4 combinations

light generations not the focus at startup

Conclusion

- CMS is very actively pursuing the search program for VLQ
- Many interesting analyses with more and more stringent limits
- Extensive use of jet substructure techniques
- Legacy results for the Run 1 combinations to come, stay tuned :

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

• Getting ready for data at higher energy !

B-1/3 quark, OS dilepton

B→tW, bZ

CMS-PAS-B2G-12-021

Selection

- Two OS isolated leptons (muon or electron), 60<M(II)<120 GeV, p_T(II)>150 GeV
- \geq 1 b-jet with $p_T > 20 \text{ GeV}$
- Background estimate with data driven method

• Strategy

- Reconstruct invariant mass of B candidate in both e and µ
- Fit simultaneously in both channels to test for presence of signal.

B-1/3 quark, OS dilepton

CMS-PAS-B2G-12-021

B→tW, bZ (OS dilepton channel)

• Signal templates of M(B) mass distribution are prepared with different admixtures of the $B \rightarrow bZ$ and $B \rightarrow tW$ final states, assuming

 $BR(B \rightarrow bZ) + BR(B \rightarrow tW) = 100\%$.

dilepton channel is sensitive, unlike l+jets

B-1/3 quark, SS dilepton

B→tW, bZ, bH

• Final state

- In BB→tW+tW-, tW+bH, bHbH→bW+WbW+W-
 - Two W bosons decaying hadronically and other two leptonically => samesign lepton pair + 6jets
- ≥ 4 jets, MET >30 GeV

• Strategy

Search in all three channel: ee, eµ, μµ

CMS-PAS-B2G-12-020

- Binned ST into five bins
- [200,400], [400,600],[600,800],
 [800,1200],[≥1200] GeV

B-1/3 quark, SS dilepton

B→tW, bZ, bH

Expected

Benchmark point, tW:bZ:bH=0.50:0.25:0.25:641(Obs), 646(Exp)

Observed

CMS-PAS-B2G-12-020

T_{2/3} quark, hadronic/leptonic

CMS-PAS-B2G-14-003

T→tH(→γγ)

• Event Selection

Variable	Hadronic channel	Leptonic channel
$p_T^{lead}{}_{photon}$	$> \frac{3}{4}m_{\gamma\gamma}$ GeV	$> \frac{1}{2}m_{\gamma\gamma}$ GeV
$p_T^{sublead}$ photon	35 GeV	25 GeV
n _{jets}	≥ 2	≥ 2
$\dot{H}_{ m T}$	$\geq 1000 { m GeV}$	\geq 770 GeV
leptons	0	≥ 1
b tags	≥ 1	-

CMS Preliminary $\sqrt{s} = 8 \text{ TeV L} = 19.7 \text{ fb}^{-1}$

Strategy

- Exploit the **narrow resonance** of $H \rightarrow \gamma \gamma$, by fitting the peak in $M\gamma\gamma$ distribution
- S_T > 1000 GeV

T_{2/3} quark, hadronic/leptonic

CMS-PAS-B2G-14-003

$T \rightarrow tH(\rightarrow \gamma \gamma)$ 10⁻² $\sigma(T\overline{T}) \times 2BR(H \rightarrow \gamma \gamma)_{95\% CL}$ (pb) CMS Preliminary vs=8 TeV L=19.7 fb⁻¹ 10⁻³ 10 Observed 10⁻⁵ pretical $\sigma(T\overline{T}) \times 2BR(H \rightarrow \gamma)$ 550 600 650 700 750 800 500 850 900 m_T (GeV) CMS Preliminary L=19.7 fb $^{-1}$, \sqrt{s} = 8 TeV BR(bW) 0.8 0.6 <u>0</u>.4 0.2

0

BR(tZ)

exp. limit = 607 GeVobs. limit = 540 GeV

Search is limited by statistics, yet a very powerful analysis for Run 2

620

596

572

548

524

500

BR(tH)

Expected

Quark Mass

Limit (GeV)

T_{5/3} Top Partners

23

- Pair production of charge 5/3 top partner with 100% decay to tW→bW W
- Striking signature: same-sign dileptons, where hadronically decaying T_{5/3} can be reconstructed

Selection:

Two same-sign leptons (e or µ) outside Z window

 $l^{\pm}l^{\pm} + 2b + 2W$

- 5 or more "constituents" in addition to the two SS leptons
- constituent=lepton, jet, W-tagged jet (2), or top-tagged jet (3)
 - Use W-tagger and HEP top-tagger with CA8 jets (CMS-PAS-JME-10-013)
- H_T > 900 GeV (jets+leptons)

CMS-PAS-B2G-12-012

15/3 Jop Partners

24

- Strategy: Mass reconstruction
- Backgrounds
 - Same-sign prompt leptons (WZ, ZZ, ttV, ttWW, W[±] W[±])
 - Opposite sign prompt leptons with charge misidentification
 - Same sign non-prompt leptons (from heavy flavor or conversions)
- Counting experiment
 - 6.6 ± 2.0 expected vs. 11 observed
 - Exclude the $T_{5/3}$ up to masses of 770 GeV

CMS-PAS-B2G-12-012