

Search for non-pointing and delayed photons in the $\gamma\gamma + E_T^{Miss}$ final state

Andrew S. Hard

The University of Wisconsin Madison

USLUA Annual Meeting Argonne National Laboratory November 12-14, 2014

Presented today & recently accepted for publication in PRD!

"Search for non-pointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV pp collisions at the LHC using the ATLAS detector"

<u>http://arxiv.org/abs/1409.5542</u>

"Search for non-pointing photons in the diphoton and E_T^{miss} final state in sqrt(s) = 7 TeV proton-proton collisions using the ATLAS detector"

<u>http://arxiv.org/abs/1304.6310</u>

"Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at sqrt(s) = 7 TeV" [CMS collaboration]

<u>http://arxiv.org/abs/1207.0627</u>

Conduct a search for new phenomena using unique **pointing capabilities** and **precision timing** of the ATLAS EM calorimeter

Many models give rise to neutral long-lived particle pair production

- Interpret results in the context of Gauge-Mediated Super-symmetry Breaking (GMSB) models
- Neutralino NLSP decays to LSP gravitino + γ
- Free parameters: neutralino lifetime (T) and the effective scale of SUSY breaking (A)

Search in the full 20.3 fb^{-1} dataset collected from the LHC at $\sqrt{s} = 8$ TeV in 2012. Published $\sqrt{s} = 7$ TeV analysis previously.

Photon Pointing (Δz_{ν})

Signal photons can have flight paths that don't point back to the primary (highest Σp_T^2) vertex

η segmentation of EM calorimeter provides good photon vertex reconstruction using first 2 layers of EM cells

Ĝ

Define the photon vertex pointing variable:

$$\Delta z_{\gamma} = z_{origin} - z_{PV}$$

Difference between the primary vertex position (z_{PV}) and the *z* position that the EM calo. reconstructs (z_{origin}) for the γ

Vertex resolution measured using $Z \rightarrow e^+e^-$ events and compared with signal Monte Carlo

Photon Timing (t_{ν})

Signal photons would reach EM calorimeter with a slight delay compared with prompt photons from a hard scatter

- Massive neutralino: β=v/c distributed to low values
- Longer geometrical path for non-pointing photons

Arrival time of EM shower measured with 2nd EM calo. layer

- Timing and energy reconstructed using optimal filtering algorithm
- Validate calibration with Z→e+e⁻ (see figure)
- Time resolution of 299 ps (256 ps) for medium (high) gain y (includes 220 ps contribution from time spread in pp collisions)

Photon selection

- "Loose" cut-based identification uses shower shape in 2nd EM calorimeter layer and leakage into hadronic calorimeter
- Transverse energy cut: $E_T > 50 \text{ GeV}$
- **Pseudo-rapidity cut:** $|\eta| < 2.37$, excluding $1.37 < |\eta| < 1.52$
- **Isolation:** $E_T < 4.0 \text{ GeV}$ in $\Delta R = 0.4$ cone around γ
- **Timing:** $|t_{\nu}| < 4 \text{ ns}$ to avoid satellite collision events

Event selection

- **Trigger:** 2 "loose" γ in $|\eta| < 2.5$ with $E_T^1 > 35$ GeV, $E_T^2 > 25$ GeV
- At least 2 photons in the event
- At least **1 barrel photon** $|\eta| < 1.37$

Signal region: $E_T^{Miss} > 75 \text{ GeV}$

Control reg. 1: 20 GeV $< E_T^{Miss} < 50 \text{ GeV}$ **Control reg. 2:** 50 GeV $< E_T^{Miss} < 75 \text{ GeV}$ **Prompt backgrounds:** $E_T^{Miss} < 20 \text{ GeV}$

	C : 1		с • [07]			
au	Signal acceptance times efficiency [%]					
[ns]	$\Lambda = 80 \ {\rm TeV}$	$\Lambda = 160 \ {\rm TeV}$	$\Lambda = 320 \ {\rm TeV}$			
0.5	8.4 ± 0.6	30 ± 1	46 ± 2			
2	5.1 ± 0.3	21 ± 0.2	33.0 ± 0.3			
6	1.7 ± 0.1	7.3 ± 0.1	12.5 ± 0.2			
10	0.86 ± 0.03	3.71 ± 0.06	6.45 ± 0.09			
40	0.089 ± 0.004	0.38 ± 0.01	0.70 ± 0.02			
100	0.016 ± 0.001	0.070 ± 0.002	0.129 ± 0.004			

Signal acceptance increases with larger Λ (more energetic events) and decreases with longer τ (more decays outside calorimeter)

Signal and Background Modeling

Signal shape from Monte Carlo samples

- Generated samples with A in [70 TeV, 400 TeV]
- Reweight to different neutralino lifetimes (*t*)
- Cross-sections calculated at NLO

Time resolution not modeled well in MC:

• Smear timing, match resolution of $Z \rightarrow e^+e^-$ data

Backgrounds from data control regions

- **Prompt y and electron fakes**: $Z \rightarrow e^+e^-$ events
- Jets faking γ : $E_T^{Miss} < 20 \text{ GeV}$ region in data
- Data-driven methods account for influence of pileup and primary vertex misidentification

Background shapes very similar in ty: \rightarrow Use $E_T^{Miss} < 20$ GeV region to model all backgrounds in fit

Fit Method

Fit incorporates two discriminating variables: timing t_{γ} and pointing $|\Delta z_{\gamma}|$ parameters of the *barrel* photon with *largest* t_{γ} . Divide data into 6 categories based on $|\Delta z_{\gamma}|$

- Varying S/B enhances the statistical significance
- Simultaneously perform 1D fit to t_v in each category
- Signal normalization correlated between categories
- Background normalizations uncorrelated, obtained from data
- Enables the use of a single template shape for all backgrounds

Dominant signal normalization uncertainties listed in the table

Signal t_{ν} shape uncertainties:

- **Time reconstruction** algorithm produces up to 10% bias for t_{γ} (measured in satellite collisions)
- **Pileup modeling** affects $|\Delta z_{\gamma}|$ and t_{γ} with higher PV mis-ID
- Combined shape impact < 10%

Source of uncertainty	Value [%]
Integrated luminosity	± 2.8
Trigger efficiency	± 2
Photon $E_{\rm T}$ scale/resolution	± 1
Photon identification and isolation	± 1.5
Non-pointing photon identification	± 4
$E_{\rm T}^{\rm miss}$ reconstruction	± 1.1
Signal MC statistics	$\pm~(0.8{-}3.6)$
Signal reweighting	\pm (0.5–5)
Signal PDF and scale uncertainties	\pm (9–14)

No need for background normalization systematics: fit to data gives normalization of background (controlled by unconstrained parameters)

Background t_{v} shape uncertainties:

- **Background composition** is not measured, take the difference between $Z \rightarrow e^+e^-$ and jet-enriched low- E_T^{Miss} data as systematic uncertainty
- **Barrel-barrel and barrel-endcap events** have different $|\Delta z_{\gamma}|$ shapes Reweight to fraction in data (61±4% BB), vary by ±4% to get systematic

Results & Conclusions

No sign of an excess in the data ($p_0 = 88\%$)

Signal and control regions well modeled by prompt backgrounds

Appendix

TABLE II. Values of the optimized ranges of the six $|\Delta z_{\gamma}|$ categories, for both low and high NLSP lifetime (τ) values.

NLSP	Range of $ \Delta z_{\gamma} $ values for each category [mm]						
Lifetime	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 5	Cat. 6	
$\tau < 4 \text{ ns}$	0 - 40	40 - 80	80 - 120	120 - 160	160 - 200	200 - 2000	
$\tau > 4 \text{ ns}$	0 - 50	50 - 100	100 - 150	150-200	200 - 250	250-2000	

TABLE III. Values of the optimized ranges of the six t_{γ} bins, for both low and high NLSP lifetime (τ) values.

NLSP	Range of t_{γ} values for each bin [ns]						
Lifetime	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	
$\tau < 4 \text{ ns}$	-4.0 - +0.5	0.5 - 1.1	1.1 - 1.3	1.3 - 1.5	1.5 - 1.8	1.8 - 4.0	
$\tau > 4 \text{ ns}$	-4.0 - +0.4	0.4 - 1.2	1.2 - 1.4	1.4 - 1.6	1.6-1.9	1.9-4.0	

Signal-Plus-Background Fits by Analysis Category

11/14/14

Andrew Hard - The University of Wisconsin Madison

95% *CL* Exclusion for $\Lambda = 200 \text{ TeV}$

