

The CMS Upgrades

Jeremiah Mans November 13, 2014

The Coming Challenges

Phase 1 Upgrades

Targeted at managing 2x nominal pileup and integrated luminosity up to ~500 fb⁻¹

Phase 2 Upgrades

Targeted at managing 5x-8x nominal pileup and integrated luminosity up to ~3000 fb⁻¹

Nov. 13, 2014

Phase 1: Tuning Up

- Incremental changes to manage higher pileup and take advantage of new technologies developed since original construction
- Major US Roles in all these upgrades, successful DOE CD 2/3 review in August

CMS TECHNICAL DESIGN REPORT FOR THE PIXEL DETECTOR UPGRADE

CMS TECHNICAL DESIGN REPORT FOR THE PHASE 1 UPGRADE OF THE HADRON CALORIMETER

CERN European Organization for Nuclear Research Organisation Européenne pour la Recherche Nucléaire CERN-LHCC-2013-xxx CMS-TDR-xx 25 January 2013

CMS

CMS TECHNICAL DESIGN REPORT FOR THE LEVEL-1 TRIGGER UPGRADE

CMS Pixel Upgrade

- Increase number of pixel hits from three to four within |η|<2.5
- New ROC allows operation at 50 PU/100kHz without hit loss and acceptable hit loss up to PU~100
- US responsible for construction of the forward pixel system (three stations at each end)

Progress on the Forward Pixels

- Thermal test of cooling setup for half-disk successful
- Pilot detector (sensors, chips, powering, cables) mounted on CMS pixel assembly for Run 2

HCAL Upgrade

Progress on the HCAL Phase 1

- Successful QIE10/11
 engineering run
- Pre-production cycles underway
 - HF front-end card
 - SiPM and SiPM packages

L1 Trigger Upgrade

- Move to new, high-performance FPGAs to enhance both calorimeter and muon triggering with highergranularity processing
 - Common use of uTCA architecture
- Strong US leadership in both muon and calo triggers

HL-LHC: Phase 2

Bright Light, Big Challenges

"Bleaching" of the Tracker **CMS Preliminary Simulation**

Blue tracker modules are inactive after 1000 fb⁻¹ due to very high leakage currents induced by hadron fluence.

"Blackening" of Calorimeters

Tower n

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta \sim 3$

Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

New Endcap Calorimeters

- Radiation tolerant
- High granularity

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz

Tracker Design with Stub Capability

Tracker Full Simulation Results

Pixel used in simulation results to date is identical to the Phase 1 Pixel detector with additional forward disks. Further optimization of pixel parameters for b-tagging and forward track parameter resolution is planned

Tracking Performance at Level 1

- Algorithms validated in digitized simulation
- Two hardware implementations under study
 - Associative memory (use case for 3d IC technology)
 - Tracklets in commercial FPGAs
- Requires a trigger latency of ≈10 µs compared with current limit of 3/6 µs in tracker/ECAL electronics

Trigger Capabilities with Tracking

$L = 5.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	Lev	el-1 Trigger	U 45 Single isoEG U Single Jet
$\langle PU \rangle = 140$	wit	n L1 Tracks	Double Jet
		Offline	2 ** Single iso TkPhoton 2 Double TkJet
Trigger	Rate	Threshold(s)	ŭ 35
Algorithm	[kHz]	[GeV]	₽ ₃₀ ₽
Single Mu (tk)	14	18	
Double Mu (tk)	1.1	14 10	
ele (iso tk) + Mu (tk)	0.7	19 10.5	
Single Ele (tk)	16	31	
Single iso Ele (tk)	13	27	
Single γ (tk-veto)	31	31	10
ele (iso tk) + e/γ	11	22 16	50
Double γ (tk isol)	17	22 16	
Single Tau (tk)	13	88	
Tau (tk) + Tau	32	56 56	Full Menu Rate @ 140PU (kHz) Full Menu Rate @ 140PU (kHz)
ele (iso tk) + Tau	7.4	19 50	
Tau (tk) + Mu (tk)	5.4	45 14	P0 = 140, 14 1eV
Single Jet	42	173	ပ်ို 1 CMS Phasell Simulation
Double Jet (tk)	26	2@125	
Quad Jet (tk)	12	4@72	
Single ele (tk) + Jet (tk)	15	23 66	
Single Mu (tk) + Jet (tk)	8.8	16 66	0.6 $11 \text{ n}^{\text{trig}} > 20 \text{ GeV}$
Single ele (tk) + $H_{\rm T}^{\rm miss}$ (tk)	10	23 95	
Single Mu (tk) + $H_{\rm T}^{\rm miss}$ (tk)	2.7	16 95	0.4 L1Mu (Run 1 configuration + ME1a unganged)
$H_{\rm T}$ (tk)	13	350	$ 0 \le \eta < 1.1 \ (Q \ge 4)$
Rate for above Triggers	180		$ 1.1 \le \eta \le 2.4 (Q \ge 4)$
Est. Total Level-1 Menu Rate	260		$0.2 \qquad \qquad$
			$-\Box - 1.1 \le \eta \le 2.4$
			⁰ 5 10 15 20 25 30 35 40 45 50
			Simulated muon p_ [GeV]

Barrel Calorimetry

- New on-detector electronics needed to meet requirements for track trigger latency
- Replacement allows trigger-level readout of each crystal and new shaping to reduce impact of outof-time pileup and increasing APD noise

Concept 1: Shashlik + Scintillator HE

- EM Calorimeter
 - Compact Pb/LYSO Shashlik using WLS based on quartz capillaries and readout using GaInP "SiPMs"
- Hadron Calorimeter
 - Scintillator-based hadron calorimeter with 30% of volume replaced by "finger tiles" and 10% by a solution with higher radiation tolerance

- Silicon readout for front portion of calorimeter
 - Si+tungsten/copper EM
 calorimeter (25 X₀, 1λ), 30 layers
 - Si+brass front hadron (3.5 λ) calorimeter, 12 layers
 - 8.7 M channels, pad sizes 0.9 cm² or 0.45 cm² depending on η
- Scintillator-brass backing calorimeter (5.5 λ)
- Goal is to suppress pileup effects by using information on shower development provided by high level of granularity
 - Informed by experience of ILC R&D

- Improvements of existing detectors
 - Electronics: DT minicrates, CSC inner MEx/1 readout
 - Both are needed for compliance with trigger upgrade
- Forward 1.6< $|\eta|$ <2.4 upgrades
 - L1 trigger rate reduction, enhance redundancy
 - GEMs: GE1/1 and GE2/1
 - iRPCs: RE3/1 and RE4/1
 - Operation in higher rate
 - Technology to be selected
- Very forward extension
 - Extend muon tagging
 - ME0 with GEMs
 - 6 layer stub
 - Baseline 2.0<|η|<3.0
 - Depends on calorimetry

Moving forward

- CMS is preparing a Technical Proposal including physics performance studies, to be completed by March 2014
 - Decision on endcap calorimeter technology planned for early 2015

Conclusion

- Run 2 and Run 3 of LHC will open a new energy regime, hopefully leading to major new discoveries
 - The Phase 1 Upgrades of CMS will support the physics program of these LHC runs and are moving to construction: Pixels, HCAL, L1 Trigger
 - Major US leadership in all three upgrade efforts
- The HL-LHC will allow for precision studies of the Higgs as well as allowing the identification and characterization of discoveries made in Run 2 and 3.
 - CMS is preparing a technical proposal detailing the plans for upgrades allowing the same physics performance for 140 pileup and 3000 fb⁻¹ as CMS had in Run 1
 - US scientific and technical efforts will be critical to the success of the HL-LHC physics program