

Search for stealth supersymmetry with photons or leptons, jets, and low MET

M. Weinberg Florida State University

- Most SUSY models assume kinematically accessible gluino/squark, non-compressed spectrum, R-parity conservation
 - Typical signatures include:
 - Large MET from stable LSP
 - High object multiplicity
- 8 TeV SUSY searches:
 - Most SUSY models with significant MET excluded out to squark/gluino masses ~ 1 TeV
 - Conversely, many low-MET topologies remain largely uncovered
 - Limits in high-MET final states motivate complementary searches

Hiding in the theory

- Large splitting between squark/gluino and LSP: Low jet multiplicity with large p_T hierarchy
- Ewkino models: EWK SUSY production dominant; reduced hadronic activity
- Cascade decays with many soft jets
- Hiding in the experiment: SUSY may have low MET
 - R-parity violation: No stable LSP
 - Compressed spectra: balanced LSP momenta
 - <u>Stealth SUSY</u>: Hidden sector leads to light, soft LSP

Stealth SUSY

- Is it possible to produce low-MET SUSY without Rparity violation or coincidentally compressed spectra?
- Ingredients of stealth SUSY:

Stealth

- Hypothesize stealth sector: Collection of fields that feel small SUSY breaking
 - Particles nearly mass degenerate with superpartners
 - Minimally must include singlet state and singlino superpartner (S, \tilde{S})

Allows decay of lightest visible sector superpartner

(Portal)

• Light *R*-odd state (typically gravitino) produced from stealth decay (e.g. $\widetilde{S} \rightarrow \widetilde{G}S$)

 $M_{\rm SUSY} \sim M_{\rm EWK}$

 $M_{SUSY} \sim \varepsilon M_{EWK}$

• Light and soft, carries away little MET

M. Weinberg Florida State University

MSSM

SUSY

Stealth model

- Start with disquark production with $\widetilde{q} \rightarrow q \widetilde{\chi}_1$
 - - Photon analysis: $\tilde{\chi}_1$ decays to γ

- Minimal stealth sector, only singlet and singlino, with $\widetilde{S} \to S\widetilde{G}$
 - Small $\tilde{S} S$ mass splitting held constant at 10 GeV, $M_{\tilde{S}} = 100$ GeV
 - Lepton analysis: $\tilde{\chi}_1$ fixed to half squark mass
 - Photon analysis: Full plane of squark/neutralino masses
 - Gravitino taken to be massless
 - Branching fractions to γ, W[±] set to unity for photon, lepton analysis

Background estimation for γ analysis

 S_T: Scalar sum of p_T of all objects

$S_{\rm T} = {\rm MET} +$	$-\sum E_{\mathrm{T}}$	$+\sum p_{\mathrm{T}}$
	γ	jets

Region	Function	Nj	S _T (GeV)
Search	Signal	≥4	> 1200
N _j sideband	Bkg shape	3	> 1100
S_T sideband	Bkg norm	≥4	1100 – 1200

Shape of background S_T distribution independent of number of final state objects

- Background shape from jetmultiplicity sideband
- Background normalization from S_T sideband
- Use normalized shape to predict number of background events with S_T above threshold

S_T scaling in γ analysis

Area-normalized S_T distributions for control (1γ) and simulated search (2γ) region

Scaling holds well in both regions

Search, MC

Control

M. Weinberg Florida State University USLUA2014 14-Nov-14

SUS-14-009

Background estimation for *l*[±] analysis

 Define search region in terms of N_{jets}, N_{b-jets}, lepton flavor, lepton charge

Region	Leptons	N _{jet}	N _{b-tags}
Search	$e^{\pm}\mu^{\mp}$	≥4	0
Top shape	$e^{\pm}\mu^{\mp}$	≥ 2	≥ 2
Top norm	$e^{\pm}\mu^{\mp}$	< 4	0
DY	$\mu^{\pm}\mu^{\mp}$	≥ 2	0
Non-prompt	$e^\pm\mu^\pm$	≥ 2	0
Validation	$e^{\pm}\mu^{\mp}$	≥ 2	1

Primary background contribution from top quarks

- Correct MC shape of N_{jets} for top quarks
- Shape from MC in 2 b-tag sample normalized to data

SUS-14-009

Data and background prediction in search (2γ) region

- Background shape determined in 3-jet bin
- Normalized in S_T sideband (1100 < S_T < 1200 GeV)
- No significant excess observed SUS-14-009 19.7 fb⁻¹ (8 TeV) 19.7 fb⁻¹ (8 TeV) Events / (100 GeV) Events / (100 GeV CMS CMS 18 12 - Data, 4 jets \rightarrow Data, \geq 5 jets 16 Expected background Expected background 10 Systematic uncertainty Systematic uncertainty 14 $\dots M_{\tilde{a}} = 900, M_{10} = 450 \text{ GeV}$ $\dots M_{\tilde{a}} = 900, M_{10} = 450 \text{ GeV}$ 12 ····· $M_{\tilde{a}} = 900, M_{\tilde{a}}^{\chi_1} = 850 \text{ GeV}$ \dots $M_{\tilde{z}} = 900, M_{10}^{2} = 850 \text{ GeV}$ 8 S⁻ sideband² S_T sideband¹ 10 6 8 6 4 2 0 1500 2000 2500 1500 2000 2500 3000 S_T (GeV) S_T (GeV)

Results for l^{\pm} **analysis**

USLUA2014 14-Nov-14

SUS-14-009

- γ analysis: Limits on squark, neutralino masses in diphoton final states
 - Shape-based limit in 4 and ≥ 5 jet channels
- **l**[±] analysis: Limits on squark mass in $e\mu$ final states
 - Cut-and-count limit from optimized S_T threshold 19.7 fb⁻¹ (8 TeV)

14-Nov-14