

Development of Bi-Alkali Antimonide Photocathode

Junqi Xie *on behalf of the LAPPD Collaboration Argonne National Laboratory, Lemont, IL*

Micro-Channel Plate Based Detectors Workshop Dec 2nd, 2014

 Learn, apply & optimize the sequential process to the fabrication of large area photocathode Achieved QE as high as 24% at 380nm and 7''X7'' large area uniform photocathode Understand the photocathode growth process, achieve cathode QE over 30%, transferring to ANL sSTF

2

Strategy for high QE photocathode

Alkali antimonide photocathodes are extremely sensitive to air and water, analysis of these materials is very difficult.

OLD TIMES

Experienced workers paying considerable attention to macroscopic properties, Based on empirical experience, lacks of detailed understanding.

In-situ **X-ray studies on photocathode**

Monitoring of Sb film growth

Out-of-plane detector **GISAXS (thickness & morphology) GIXRD (structure & composition)** In-plane detector

GISAXS images with periodic oscillation can be used to characterize thin film thickness and surface morphology

Diffusion process of K and Cs

time

Diffusion of Cs

With the diffusion of K and Cs, GISAXS image fades out, indicating cathode surface getting rougher and rougher. XRD pattern indicates different compounds.

Monitoring of film structure during growth

Sb film was completely dissolved into K, with continuing growth of K, polycrystalline K_x Sb mixture was formed. With the diffusion of Cs, polycrystalline K_2 CsSb starts to form.

Comparison of cathode XRD pattern with different QE

High QE cathode exhibits single K2CsSb composition, shows cubic structure with preferred texture at (220)(222) directions.

Low QE cathodes exhibit mixture of different compositions.

Evolution of film thickness and surface morphology

 \triangleright Sb layer shows flat surface, the diffusion of K and Cs breaks the surface along lattice, increase surface roughness.

The diffusion of K increases film thickness by a factor of 4.5, the diffusion of Cs does not increase film thickness a lot, indicating a replacement of K atom with Cs atom.

Growth recipe development

 - Co-evaporation to achieve high QE photocathode

What gives a high **QE photocathode?**

 \triangleright Right stoichiometry, slow growth rate

- -> better crystallinity, smoother surface
- -> reduce defect scattering & improve electron mean free path
- -> higher QE

6 cm X 6 cm Photocathode overall goal

 In-situ X-ray studies reveal that achieving a **stoichiometric** photocathode with better **crystallinity** is the major point to achieve high QE.

Over 30% QE photocathode was achieved recently via **co-evaporation** recipe.

6 cm X 6 cm Photocathode strategy

6cm x 6cm Small single tile facility

- **- An integrated facility dedicated for air sensitive photodetector production**
- **- Transfer photocathode for flat panel MCP photodetector production**

Current photocathode growth chamber status

Cathode growth:

- \checkmark Chamber base pressure 10⁻¹⁰ Torr
- \checkmark Three full range temperature control effusion cells (room temperature to 900 °C)

Cathode growth monitoring:

- \checkmark Quartz crystal microbalance (QCM)
- \checkmark Transmission (400 nm)
- \checkmark Photocurrent response

Issues:

X Plasma generator (under repair)

X MCP outgas and getter activation are done in photocathode growth chamber, may contaminate the chamber (Lei's talk)

X **Other possible monitoring equipment?**

- Production line of photodetector

Photocathode growth chamber commissioning - Sb film uniformity via effusion cells

Sb film uniformity simulation Sb film transmission uniformity map

 \triangleright Simulation indicates source-substrate distance needs to be at least 40 cm for $+5\%$ non-uniformity over 6cm x 6cm substrate;

 \triangleright Sb film transmission uniformity map confirms the uniformity as-expected

Bialkali Photocathode for LAPPD small Photodetector

Currently, sequential diffusion process is followed to grow cathode for easy process control.

Summary

- **Previous photocathode work has been summarized.**
- **X-ray techniques including XRD, XRR and GISAXS were used to** *in-situ* **characterize the K-Cs-Sb bialkali photocathode growth process.**
- **High QE cathode exhibits cubic structure with preferred texture at (220)(222) directions.**
- **QE over 30% at 400 nm was achieved with new recipe.**
- **6cm x 6cm facility integrated with effusion cells was designed and built.**
- **Good film growth uniformity using effusion cell as expected.**
- **Initial photocathode growth shows QE ~13%, QE improvement is undergoing.**

Future works

- **Demonstrate photocathode with uniform QE** \approx **20% in the 6cm x 6cm facility.**
- **Transfer the developed new recipe to the 6cm x 6cm facility.**
- **Demonstrate prototype photodetector with over 30% QE photocathode.**
- Other possible photocathode materials based on different applications.

Acknowledgement

K. Byrum, M. Demarteau, J. Gregar, E. May, M. Virgo, R. Wagner, D. Walters, J. Wang, L. Xia, H. Zhao, *the LAPPD collaboration Argonne National Laboratory, Argonne, IL 60439, USA*

M. Ruiz-Oses, X. Liang, I. Ben-Zvib *Stony Brook University, Stony Brook, NY, 11794, USA*

K. Attenkoferc, S. Schubert, J. Smedley *Brookhaven National Laboratory, Upton, NY, 11973, USA*

J. Wong, H. Padmore *Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA*

Thanks for your attention!