

The Status of Large Area MCP-PMT R&D in China

Sen Qian

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn

On Behalf of the Workgroup

Outline

- ▶1. JUNO and the new MCP-PMT;
- 2. Progress of the R&D process;
- >3. Performance of the MCP-PMT prototype;
- >4. Attempt to improve the performance of the prototype;
- ▶5. Summary and Plan

PMT requirement of JUNO

- LS volume: × 20 → for more statistics (40 events/day)
- Light (PE) \times 5 \rightarrow for better resolution (ΔM^2_{12} / $\Delta M^2_{23} \sim 3\%$)
 - Three types of high QE 20" PMTs under development:
 - ⇒ Hammamatsu PMT with SBA photocathode
 - \Rightarrow A new design using MCP: 4π collection
 - ⇒ Photonics-type PMT

Requirement:

- ✓ High QE 20 inch PMT;
- ✓ Good SPE detection capability;
- ✓ Wide dynamic range;
- Low radioactive background;
- ✓ More than 20 years lifetime;
- Can withstand 0.4MPa Pressure;
- ✓ > 15000 pieces;

≥20" Hammamatzu PMT

>20" MCP- PMT

2. Progress of the R&D process;

2.1. Progress of the **Electron-Optics Simulation**

- > 2.2. Progress of the **Glass bulb**
- 2.3 Progress of the Photocathode

2.4 Progress of the MCP Module & Equipment

2.5 Progress of the Test System

> 2.6 Progress of the **Prototypes**

2.1. Progress of the Electron-Optics Simulation

≻8 inch MCP & Anode Module;

➤The collection efficiency 8 inch

-209 -

-464 -

-718 -

-973 -

-1.23e+03 -

-1.48e+03 -

-1.74e+03 -

-1.99e+03 -

-2.25e+03 -

-2.5e+03

-464 -

-718 -

-973 -

-1.23e+03 -

-1.48e+03-

-1.74e+03-

-1.99e+03-

-2.25e+03

-2.5e+03 4

➤The collection efficiency 20 inch

➤The simulation results show that the small MCP in the middle of the glass could collected the all the photoelectron from the large area photocathode!

> 2.2. Progress of the Glass bulb

≻Large area

Low radioactive background

Low background gamma spectrometer

➤Superb water-resistance

The 20inch glass bulb was fine after the super water-resistance experiment;
 The low back radioactive background glass material was found for the mass production

The different Shape of the PMT prototype

Туре	Size	Shape	AMP	
C0811-1	8 inch	sphere	MCP	
C0800-1	8 inch	ellipsoidal	MCP	
C0800-2	8 inch	ellipsoidal	MCP	
C2011-1	20 inch	sphere	MCP	
C2000-1	20 inch	ellipsoidal	MCP	
C2001-1	20 inch	Hemisphere+ Hemiellipsoidal	MCP	

2.3. Progress of the Photocathode

- **1.** The MCP-PMT group could produce the 8 inch prototype with the 25% QE@410nm
- 2. For Large area photocathode, the AMS would be the one evaporated by current for better control the process. MCP-PMT group also use this method to improve the QE from **25% to 32%**
- 3. We try to produce the HQE PC in our large area prototype.

2.4 Progress of the MCP Module & Equipment

for better: CE of the MCP; P/V for SPE; Aging of the MCP;

Consistency of the MCPs;.....

Un-transmission equipment

Transmission equipment

Normal MCP

Treated MCP

Better: QE and Uniformity of the PC; P/V for SPE;

2.5 Progress of the Test System

The Large PMT evaluation system for MCP-PMT of JUNO

The parameters of the MCP-PMT (testing)

- Anode Pulse Rise Time;
- Pre/Late/After Pulse;
- Dark Count
- The Single Photoelectron Spectrum;
 The voltage distribution (BASE);
 The Supply voltage;
 Typical Gain Caracteristic;
 Anode Dark Current
- Spectral Response;
 Wavelength of Maximum Response;
 Cathode Sensitivity: Luminous(2856K);
 Quantum efficiency with λ
- Photocathode efficiency Area;
 Photocathode efficiency Uniform;
 The position of the Sb, K, Cs;
- The linearity of the PMT
 Magnetic characteristics;
 Transit Time Spread (FWHM)

MCP-PMT-007#

MCP-PMT-031#

MCP-PMT-042#

MCP-PMT-044#

20 inch **sphere** Prototype

20 inch ellipsoidal Prototype

8 inch **sphere** Prototype

8 inch ellipsoidal Prototype

Outline

>1. JUNO and the new MCP-PMT;

>2. Progress of the R&D process;

➤3. Performance of the MCP-PMT prototype;

- >4. Attempt to improve the performance of the prototype;
- ▶5. Summary and Plan

8 inch Prototype (007#) with horizontal MCPs in the middle

This is the first 8" (one MCP module) prototype for SPE by un-transmission equipment

The Design MCP-PMT

The Prototype

The signal of the 8 inch PMT

The I-V curve of the PC

The body resistance of the MCP

The SPE of the PMT

8 inch Prototypes (031) with Vertical MCPs in the middle

This is the first 8" (Two MCP modules) prototype for SPE by un-transmission equipment

The Design MCP-PMT

The Prototype

The signal of the 8 inch PMT

The I-V curve of the PC

The body resistance of the MCP

The SPE of the PMT

8 inch Prototype (042#) with horizontal MCPs near the bottom

This is the 8" (one MCP module) prototype for better CE and TTS uniformity by un-transmission equipment

 \sim

8 inch Prototype (044#) with horizontal MCPs near the bottom

This is another 8" (one MCP module) prototype for better CE and TTS uniformity

The Design MCP-PMT

Dark Rate / kHZ

10

0

The Prototype

 χ^2 / ndf

Prob

p0

p1

p2

p3

p4

p5

p6

p7

p8

500

P/V = 1.587053 Gain = 1.10E+007

550

Charge/25fC LSB

311.2 / 268

1.289e+004

0.03572

246.7

1.686

3.167

12.81

317.1

36.17

5.767

-0.002031

600

The Dark count ratio

240

120

The SPE of the PMT

The 20 inch Prototype (051#) with Vertical MCPs

This is the first 20" (two MCP modules) prototype for SPE by transmission equipment

30 西光所-032# 25 南京夜视-038# Quantum Efficiency / % 南京夜视-040# 南京夜视-051# 20 15 10 QE~22%@410nm 5 0 500 400 600 700 300 The QE of the RMT)

 Agilent Technologies
 MON NOV 24 10:50:37 2014

 2 500 v/
 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 停止
 12
 -442 v

 10 v/
 -1.200 20.00 v/
 0 v/
 10 v/
 -442 v

 10 v/
 -1.200 20.00 v/
 0 v/
 10 v/
 -442 v/

 10 v/
 -1.200 v/
 0 v/
 10 v/
 10 v/
 -442 v/

 10 v/
 -1.200 v/
 0 v/
 10 v/<

The signal of the 8 inch PMT

The HV-Gain curve

> The performance of the PMT prototypes

Characteristics	unit	R5912-100 (Hamamatsu)	MCP-PMT-8 (IHEP)	R3600 (Hamamatsu)	MCP-PMT-20 (IHEP)
size	inch	8	8	20	20
Spectral Response	nm	300~650	300~650	300~650	300~650
Photocathode Material		Bialkali-SBA	Bialkali	Bialkali	Bialkali
Electron Multiplier		Dynode	МСР	Dynode	МСР
Gain		$\geq 1 \times 10^7$	≥1×10 ⁷	$\geq 1 \times 10^7$	≥ 1 ×10 ⁷
Photocathode mode		transmission	reflection + transmission	transmission	reflection + transmission
Quantum Efficiency (400nm)	%	35	25 (35)	25	22 (?)
Electron Multiplier Collection efficiency	%	~ 60%	~ 60%	~ 70%	~ 60%
Anode Dark Count	Hz	~10K	~5K	~50K	~60K
Anode Pulse Rise Time	ns	3.8	≤2	6	≤2
Transit Time Spread (TTS)	ns	~2.4	≤3?	~3.5	≤3?
Anti-Magnetic characteristics		normal	normal	normal	normal
Glass		Low-Potassium Glass	Low-Potassium Glass	HARIO-32	Low-Potassium Glass-

Outline

>1. The JUNO and the new MCP-PMT;

>2. The progress of the R&D process;

>3. The performance of the MCP-PMT prototype;

>4. Attempt to improve the performance of the prototype;

►5. Summary and Plan

3.0. The challenge from Hamamatsu

 Prototype of the 2 photodetectors will be ready within half a year, and its performance and feasibility are tested in the water tank.

3.2. How to improve the Uniformity of the PC

20"- R12860

8"- MCP-PMT-035#

We try our best to improve the uniformity of the photocathode in large area prototype. Using the Transmission equipment would be the best choice.

3.2. How to improve the CE of the MCP module

In order to improve the performance of the MCP module (better CE, P/V,.....):

1. Different types of MCPs were produced:

The Diameter of the MCP: **33mm; 56mm;** The Diameter of the Hole: **6um; 8um; 10um; 12um;** The Inclined Angle: **0°; 8°; 12°;** The Open Area Ratio: **60%; 77%;** The Depth of output electrode:.....

2. Different structure of MCP modules were produced:

MCP module in 20" PMT

3.3. How to improve the performance by Electron-Optics

MCF

Large acceptance → Better collection efficiency

1 Dynode + MCPs

Dynode

+ high QE

As the Hamamatsu improved their design of the Dynode from **Venetian Blind** to **Box & Line dynode**, we also simulate the structure with Dynode + MCPs, for better CE and P/V ability (just the simulation work).

> The performance of the 20 inch prototypes

Characteristics	unit	R3600 (Hamamatsu)	MCP-PMT-20 (IHEP)	R12860 (Hamamatsu)	MCP-PMT-20 (IHEP)
ststus		Finished	Finished	Finished	Plan
size	inch	20	20	20	20
Spectral Response	nm	300~650	300~650	300~650	300~650
Photocathode Material		Bialkali-HQE	Bialkali	Bialkali-HQE	Bialkali
Electron Multiplier		Dynode	МСР	Dynode	МСР
Gain		$\geq 1 \times 10^7$	$\geq 1 \times 10^7$	$\geq 1 \times 10^7$	$\geq 1 \times 10^7$
Photocathode mode		transmission	reflection + transmission	transmission	reflection + transmission
Quantum Efficiency (400nm)	%	25	22 (?)	32	35 (?)
Electron Multiplier Collection efficiency	%	~ 90%	~ 60%	~ 90%	~ 80%
Anode Dark Count	Hz	~50K	~60K	~50K	~50K
Glass		HARIO-32	Low-Potassium Glass-	HARIO-32	Low-Potassium Glass-

Outline

>1. The JUNO and the new MCP-PMT;

2. The progress of the R&D process;

>3. The performance of the MCP-PMT prototype;

▶4. Summary and Plan

Summary

>1. A new type of MCP-PMT is designed for the next generation neutrino exp.

✓ Large ares: ~ 20";

✓ High photon detection efficiency: ~30%, at least \times 2 than normal PMT;

✓ Low cost: ~ low cost MCPs;

>2. The R&D process is composing with 3 steps.

① 5"(8") prototype with transmission photocathode;(2010-2011)

(2) 5"(8") prototype with transmission and reflection photocathode; (2012-2013)

③ 20" prototype with transmission and reflection photocathode; (2014-2015)

>3. The R&D work is divided into 6 Parts to product the prototype to detect SPE:

①Photocathode; ②MCP; ③Glass; ④Photomultiplier;

⑤vacuum equipment; ⑥PreAMP & Base;

MCP-PMT development:

>Technical issues mostly resolved;

Successful 8" and 20" prototypes with normal performance;

Three types of 8" prototypes;

- ➢QE ~ 25%@410nm; CE ~ 60%;
- ►P/V of SPE > 2.0;
- >Dark count and dark current could be reduced by the transformed equipment;
- > The QE uniformity could be increased by the transformed equipment;
- The After Pulse ratio really small;
- The CE and the uniformity of CE need be improved later;
- Two types of 20" prototypes;
- ➢QE ~ 22%@410nm; CE ~ 60%;
- ►P/V of SPE > 2.0;
- >SPE and QE uniformity were better than 8inch for using the transformed equipment;
- ➢QE and CE uniformity need to be improved!

The better performance Prototype should be produced!;

➢QE ~ 35%@410nm; CE ~ 80%;

Thank! 谢谢!

Thanks for your attention! Any comment and suggestion are welcomed!

Jiangmen Underground Neutrino Observatory (JUNO)

The Conventional PMT

Photon Detection Efficiency (PE)= QE_{Trans} * CE = 20% * 70% = 14%

> The new design of a large area PMT

High photon detection efficiency + Single photoelectron Detection + Low cost 1) Using two sets of Microchannel plates (MCPs) to replace the dynode chain 2) Using transmission photocathode (front hemisphere) ~ 4π viewing angle! and reflection photocathode (back hemisphere) 100% 100% 1.Insulated trestle table 30% з 2.Anode 30% 3.MCP dodule 5 40% 4.Bracket of the cables 6 **5.**Transmission Photoca 30% 7 70% 6.Glass shell 8 70% 7. Reflection Photocatho 8.Glass joint 9 Transmission rate of the glass: 40%

Quantum Efficiency (QE): of Transmission Photocathode 30%; of Reflection Photocathode 30%; Collection Efficiency (CE) of MCP: 70%;

 $PD = QE_{Trans}*CE + TR_{Photo}QE_{Ref}*CE = 30\%*70\% + 40\%*30\%*70\% = 30\%$ Photon Detection Efficiency: 15% \rightarrow 30% ; \times ~2 at least !