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Motivation

e Photo-z PDF are important in cosmology
e Severall methods/codes to compute photo-z

e Need for a meta-algorithm that combines multiple
techniques

e PDF are good but for large datasets, storage and
| /O will be an issue

e Machine Learning and statistical tools
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How to produce, combine, store and use P(z) I

Photo-z PDF estimation

zConf # 0.16

Normalized PDF
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Carrasco Kind & Brunner 2013a (MNRAS, 432, 1483
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Photo-z PDF estimation: TPZ

‘e TPZ (Trees for Photo-Z) is a )
supervised machine learning code

e Prediction trees and random
forest

e Incorporate measurements errors
and deals with missing values

e Ancillary information: expected
errors, attribUte ranking and Others Carrasco Kind & Brunner 2013a (MNRAS, 432, 1483)

o Application to the S/G

http://lcdm.astro.illinois.edu/code/mlz.html
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Photo-z PDF estimation: SOM

o SOM(Self Organized Map) is a
unsupervised machine learning
algorithm

Weights matrix

Input layer

e Competitive learning to
represent data conserving topology

Neuron 1 /

o] W, = [wip, Wiz, ... Wi

e 2D maps and Random Atlas

e Framework inherited from TPZ

e Application to the S/G

Carrasco Kind & Brunner 2014a (MNRAS, 438, 3409
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Photo-z PDF estimation: BPZ T

‘e BPZ (Benitez, 2000) is a
Bayesian template fitting method
to obtain PDFs
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e Set of calibrated SED and filters
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e Doesn't need training data

4000 5000 6000 7000 8000
Wavelength [A]

e Priors can be included

- /
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Photo-z PDF estimation: MLZ T
MLZ :Machine Learning for photo-Z

http://lcdm.astro.illinois.edu/code/mlz.hml

‘e TPZ, SOM and BPZ iIncorporated in one python
framework, more can be added

e Public, parallel and easy to use
e PDF Sparse representation included

e Current version 1.2, GitHub repository
(https://github.com/mgckind /MLZ)

(@ pycuda, h5py and numba still in folder
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Photo-z PDF estimation: Error and validation

Out of Bag data used to validate trees/maps

Changes for every tree/map and is not used during training

\We can learn from the cross-validation data!
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How to produce, combine, store and use P(z T

Photo-z PDF combination
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Photo-z PDF combination: Bayesian framework T |

R - Band

Carrasco Kind & Brunner 2014c (MNRAS 442, 3380)
DES®@Chicagoland, December 9" 2014
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This approach

Supervised method
ke
Unsupervised method
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Template fitting
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Photo-z PDF combination: Results 1

Matias Carrasco Kind

Xy

Carrasco Kind & Brunner 2014c (MNRAS 442, 3380)
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(e Several combination
methods

e Bayesian model averaging
(BMA) and combination
(BMC) are the best

e \We introduce the [-score
which combine multiple
metics after being rescaled to
compare different methods
and/or codes

In, = Z w; M




Photo-z PDF combination: Outliers 1

Naive Bayes Classifier (same used for spam emails) to identify
"spam’ galaxies using information from multiple techniques

(Each feature provides
information about these
two classes, and can be
combined to make a
stronger classifier

- J

Carrasco Kind & Brunner 2014c (MNRAS 442, 3380)
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Photo-z PDF combination: Outliers 1

Oob data
1 Outliers

No outliers

‘e Highly bimodal

Number counts

e Little contamination
Test data e Good discriminant

e Consistent between
samples
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Carrasco Kind & Brunner 2014c (MNRAS 442, 3380)
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How to produce, combine, store and use P

Photo—z PDF storage
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Photo-z PDF storage: Sparse representation

Use Gaussian and Voigt

profiles as bases, need —— T
— riginal — Sparse rep.

7\ ) 2 \ — Multi Gaussian - - Single Gaussian
original bases :

Find basis and amplitud to
reduce residual on each step

With only 10-20 bases
achieve 99.9 % accuracy

0.7 0.9 1.1 13 15 1.7
redshift

Use 32-bits integer per

: / Carrasco Kind & Brunner 2014b (MNRAS, 441, 3550)
basis, compression

B —15 bits: normalized amplitude - ——— 16 bits: base humber ———

StOI’e M u |t| ple P D FS 32 bit integer per base function
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Photo-z PDF storage: Results
2| [— Ssingle Gaussian original || [— Monte Carlo] —  Multi Gaussian]

1 o4 07 10 13 16 01 04 07 10 13 16 01 04 07 10 13 16 01 04 07 10 13 16
z pA pA pA

Carrasco Kind & Brunner 2014b (MNRAS, 441, 3550

For PDFs with less than 4 peaks 5-10 points should be sufficient

Sparse representation gives more accurate and more compressed
representation for N(z), 99.9% accuracy with 15 points (200
points originally)
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How to produce, combine, store and use P(z T

Photo-z PDF applications

zConf + 0.16
I

Normalized PDF

Dark Matter

yConf = 0.80 | zConf = 0.98
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Photo-z PDF application: N(z) T |

By definition:

24\ > 2
Z f Az//Q Z)dZ

Using sparse representation, we represent each PDF pz; as:
Pz, = D - 0y D is the dictionary, 0y, is the sparse vector, then

N
A
N(z) = Z k- f =D Ddz Only bases are integrated

by precomputing:
N z4+Az/2 1
on = Y Oy In(z f AZ/ded,z =12 \Vm
k=1

N (%) is reduce to a simple dot product
N(Z) — ID(Z) ¥ 5]\[
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lication: N(z

2z PDF a

Photo-

Sparse representation on SVA1 GOLD catalogs

zp/

H v up

Probabilistic photo-zs 19
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Applications on DES T l

e Many sources of spectra (SDSS, ATLAS, GAMA, PRIMUS,
OzBESSNIPERS | VAIDS SAGES, BOSS, DEER2, 2dF,
zCOSMOS, Wigglez, 6dF, etc...)

e So far we have over 150K matched spectra with DES data
(SVA1, Y1A1l) and even more will be available soon for SPT

regions

e Several regions and several codes to minimize biases and
systematics
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Applications on DES: SVA1

DESDM |
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Sanchéz, Carrasco Kind, et al. 2014 (MNRAS, 445, 1482)
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Applications on DES: SVA1

Test 1
BPZ ArborZ P(z) ; )
BAZY ANNz2 P(z) Sanchéz, Carrasco Kind, et al. 2014 (MNRAS, 445, 1482)
LePhare SkyNet P(z)
PhotoZ BPZ P(z)
TPZ P(z) ZEBRA P(z)
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Applications on DES: SVA1

Test 1
BFZ ArborZ P(z)

BAZY ANNz2 P(z) Sanchéz, Carrasco Kind, et al. 2014 (MNRAS, 445, 1482)
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Applications on DES: Y1A1 STRIPES?2 §

Use SVAI1 as training set to validate in Stripe 82,
still to be defined catalogs (after depth masks)
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Y1A1l STRIPE82 (Preliminary

LXES [

POFs
ESDM |
I_spec

ESLIM

PDFs
DESDM ||
I_spec

POFs
CESDM
Z_Spec
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Photo-zs in DES Database 1 l

® Soon to be part of each release, a
few photo-z codes already in eups

e Best way store and access
photo-z PDFs under investigation

e Several codes available, possible
combination of PDFs
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Conclusions T l

v/ Compute photo-z PDF

Individual technlques (MLZ; arX|v 1303.7269, arXiv:1312.5753)

v Combine PDFs efficiently

Better than individual, outliers identification (arXiv:1403. 0044)

v PDF SP)arse Representation

99.9% accuracy in P(z) and N(z) with 15 points (arXiv:1404.6442)

v/ Uses of photo z PDF!

Clustering, weak lensing, welghts etc..
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HANKS!

Questions?
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