Cluster Cosmology with the South Pole Telescope

Bradford Benson (Fermilab, U. Chicago)

SZ Cluster Surveys: Mass vs Redshift

First SZ-discovered cluster was in 2008 (Staniszewski et al); 6 years later there are > 1300 SZ-identified clusters!

Dark Energy and Cluster Cosmology

- Abundance of clusters is sensitive to the **dark energy** equation of state, $w = p / \rho$
- If dark energy was due to a cosmological constant then $w = -1$
- Cluster Abundance: *dN/dz*

Depends on:

Matter Power Spectrum, σ8 Growth Rate of Structure, *D(z)*

> **Depends on:** Rate of Expansion, *H(z)*

SPT Significance as a Mass Proxy

• The challenge for any cluster survey is to link cluster "observable" to cluster mass

• *The SZ flux is expected to be a lowscatter observable*

(Kravstov 2006, Fabjan 2011, Battaglia 2012)

• S/N in filtered SPT map is a low-scatter mass proxy (Vanderlinde+10)

- **Scatter in** *ln(M)*
	- • **7% given** *Ysz, Yx*
	- *12% given SPT S/N*
	- • **~***25% given X-ray Lx*
	- *~30% given Richness*

Ysz-Yx **Relation:** *Fit using 83 Clusters with Chandra X-ray Observations*

SZ vs X-ray measure of "Compton" *Y* **parameter (density x temperature)**

- 1:1 relation with no tilt
- No redshift-evolution
- Low-scatter $(\sim10\%)$

Cosmological Analysis: Combine X-ray Observables with SPT Cluster Survey

Use Markov-Chain Monte Carlo (MCMC) method to vary cosmology and cluster observable-mass relation simultaneously, while accounting for SZ selection in a self-consistent way

6 Cosmology Parameters (plus extension parameters)

- Λ CDM Cosmology
	- $\Omega_{\rm m}h^2$, $\Omega_{\rm b}h^2$, $A_{\rm s}$, n_s , $\boldsymbol{\theta}_s$
- Extension Cosmology
	- $-w$, Σm_v , f_{NL} , N_{eff}

9 Scaling Relation Parameters

• X-ray $(Yx-M)$ and SZ $(\zeta-M)$

relations (4 and 5 parameters):

- A) normalization,
- B) slope,
- C) redshift evolution,
- D) scatter,
- F) correlated scatter

Benson et al 2011, arXiv: 1112.5435

SPT Significance-Mass Calibration

Use X-ray (*Yx-M*) relation to calibrate SPT significance-mass relation:

- *X-ray observations calibrate slope, scatter, redshift evolution*
- *Weak Lensing calibrates mass normalization (~10-15% accuracy)*

CDM Constraints: *SPT data using Vikhlinin+09 Yx mass calibration*

Benson et al., ApJ 763, 147 (2013) Reichardt et al., ApJ 763, 127 (2013) de Haan et al., (2014), in prep

CMB Constraints on σ8, Ω^m

Small but important shift in *σ8* **between WMAP and Planck**

- Number of clusters goes like (*σ8*)10
- Planck cosmology predicts ~2-3x more clusters than WMAP

(WMAP7) Komatsu+2011 (SPT) Story+2012 Planck XX 2013 Planck XVI 2013

Yx-M **Weak Lensing (WL) Calibration:** *Updating calibration to new Hoekstra+14 calibration*

- Updated Yx-M calibration using weak-lensing (WL) masses from Hoekstra+14
- Multiply Vikhlinin+09 Yx-masses by:
	- Hoekstra+12: 1.03+/-0.15
	- Hoekstra+14: 1.15+/-0.16

```
M(WL, Hoekstra+14) 
= (1.15 + (-0.16) \text{ M(Yx)})
```
• Caveat: Reasonable WL people (e.g., Hoekstra, von der Linden) still have ~10-15% offsets in mass estimates even using the same WL / shear data

CDM Constraints: *Using Hoekstra et al. 2014 Weak Lensing calibration*

- Weak lensing (WL) is used to calibrate absolute mass scale
- WL techniques and measurements have improved quickly
- Current measurements indicate a 15% increase in mass calibration from Yxcalibration

CDM Constraints: CMB vs Clusters *Updated to Hoekstra et al. 2014 calibration*

- •**Planck CMB** and **SPT clusters** are statistically consistent
- •Relatively good agreement between SPT clusters with "**Weighing the Giants**" (Mantz et al. 2014), based on Rosat all-sky survey

 $SPT_{CL}+H_0+BBN+fgas$ $\sigma_8 = 0.783 + 0.040$ $\Omega_{\rm m}$ =0.293 +/- 0.034

de Haan et al., (2014), in prep

CDM Constraints: CMB vs Clusters *How will this change with Planck-CMB 2014 release?*

New Planck papers Dec. 22, 2014!

What to look for (aka rumors) regarding $σ_8Ωm$ *:*

1) Reionization optical depth will decrease by >1

• Planck dust measurements impact CMB constraints: δ (tau) ~ $\delta(\sigma_{8})$

2) Movement back towards WMAP cosmology

• Planck 220 GHz had odd pull on Ω^m *constraint (Spergel et al. 2014)*

3) Calibration Offset between WMAP and Planck

• 5-sigma (2% power) discrepant between WMAP, Planck

CDM Constraints: CMB vs Clusters *How will this change with Planck-CMB 2014 release?*

Joint DES, SPT Cosmology: Cluster Abundance

- Same basic likelihood formalism can be applied to joint DES +SPT cluster cosmology
	- *• Select on DES richness, SPT is the "follow-up" observable*
- SPT effectively provides the scatter calibration for DES
	- *• In Rozo+09 (MaxBCG), scatter prior limited* σ*8 to a 4% constraint*
- •Synergies between DES, SPT surveys is most evident in growth factor constraint gamma

$$
\frac{d\ln D}{d\ln a} \simeq \Omega_m(a)^\gamma
$$

Cunha et al., (2009)

Joint DES, SPT Cosmology: kinematic Sunyaev-Zel'dovich (kSZ) Pairwise

- kSZ effect imprints peculiar velocity of cluster in CMB (velocity relative to CMB rest frame)
	- *• Clusters are test particles which probe the large scale gravitational potential by measuring their "pull" on each other*
- Recently detected at 3-sigma using ACT+SDSS (Hand+12)
- SPT-SZ(3G)+DES expects to detect kSZ at 13 (30) sigma (Keisler+12)

Keisler & Schmidt (2012) Benson et al. (2013)

Joint DES, SPT Cosmology: kinematic Sunyaev-Zel'dovich (kSZ) Pairwise

- kSZ potentially powerful probe to break degeneracy between dark energy ("*w*") and growth ("gamma") constraints
- Interesting constraints on the sum of the neutrino masses
	- *• A StageIV CMB experiment kSZ constrains* $\sigma(\Sigma m_v) \sim 30$ meV, *comparable to LSST, DESI surveys*

Mueller et al. (2014), arXiv: 1408.6248 Mueller et al. (2014), arXiv: 1412.0592

Summary

- **Remarkable progress in SZ cluster surveys!**
	- **Over 1300 SZ identified clusters in less than 6 years**
	- **Unique massive, high-redshift systems that probe a new epoch of cluster formation**
- **Multi-wavelength data critical to study cluster evolution and cosmology by leveraging the strengths of different data sets**
- **SZ surveys are just beginning!**

• Future CMB polarization measurements will increase SZcluster samples by orders of magnitude, and enable new physics (e.g., CMB lensing, peculiar velocities, etc.)

External Advisory Board Meeting – April 16 - 18, 2013

Joint DES, SPT Cosmology: kSZ Pairwise

- kSZ potentially powerful probe to break degeneracy between dark energy ("*w*") and growth ("gamma") constraints
- Interesting constraints on the sum of the neutrino masses
	- *• A StageIV CMB experiment kSZ constrains* $\sigma(\Sigma m_v) \sim 30$ meV, *comparable to LSST, DESI surveys*

Mueller et al. (2014), arXiv: 1408.6248 Mueller et al. (2014), arXiv: 1412.0592

Planck Cosmology has *profound* mismatch with Cluster Abundance

Vikhlinin et al. 2009 (CCCP, X-rays)

Planck Cosmology has *profound* mismatch with Cluster Abundance

Vikhlinin et al. 2009 (CCCP, X-rays)

SPT Footprints DES Footprint SPT Footprint 22h 0h 2h 4h 6h $60°$

Ċ

ACT-CL/SPT-CL J0102-4915: *"El-Gordo"*

universe above its mass and redshift of $M₂₀₀ \sim 3 \times 10^{15} M_{sun}$ / *"Rarest" cluster in universe;* only ~1 expected in h70 at *z*=0.87

ACT, Menanteau et al. (2011)

SPT-CL J2344-4243: *The "Phoenix Cluster"*

in the Universe

~800 Msun / year

BBC SCIENCE ICE & ENVIRONMENT FRIDAY **Galaxy cluster's 'starburst' surprises** astronomers Astronomers have seen a huge galaxy cluster doing what until now was only theorised to happen: making new stars AUG. 17, 2012 Most galaxy clusters - the largest structures in **Massive "Phoenix Cluster" Supersizes Star** the Universe - are "red and dead", having long since produced all the stars they can make. **Creation** But cluster formation should, according to theory, include a cooling phase, resulting in blue light from new stars. Writing in Nature, researchers say they have seen evidence that the enormous Phoenix cluster makes 740 stars a year. In our own Milky Way, only one or two new stars are made each year. The cluster, some seven billion light-years away. is formally called SPT-CLJ2344-4243 but the researchers has for the constellation in which it lies. Foley et al 2011

"classical" X-ray cooling rate of 2850

• **Star formation efficiency of ~30%;**

• **Most X-ray luminous cluster known**

• **Largest star formation rate**

observed in a cluster BCG:

McDonald et al. (2012, 2013)

 $\overline{}$, Figure 1 of "A massive, cooling-flow-induced starburst in the core of a luminous cluster of galax published in Nature Vol 488, 349-352 (August 16, 2012).

U,

"Phoenix" Club
"Phoenix" Cluster

Chandra SPT-XVP (80 clusters at *z > 0.4***):** *Central Entropy and Cool Core Evolution*

• While cluster density profiles were found to be less "peaky" at high-redshift $(z > 0.6)$, i.e, no "classical" cool cores

• There was a persistent floor in the central entropy; whatever mechanism that injects energy / entropy in clusters has been stable since z ~ 1

Chandra SPT-XVP (80 clusters at *z > 0.4***):** *Central Entropy and Cool Core Evolution*

• While cluster density profiles were found to be less "peaky" at high-redshift $(z > 0.6)$, i.e, no "classical" cool cores

• There was a persistent floor in the central entropy; whatever mechanism that injects energy / entropy in clusters has been stable since z ~ 1

The SPTpol Survey (2012-):

SPTpol, Crites et al. (2014) SPTpol, Hanson et al. (2013) ACTpol, Naess et al. (2014)

- **• SPTpol, 3 years of observations already!**
	- First detection of "B"-modes (Hanson et al. 2013)
	- Most precise constraints at multipoles > 1000 of TE, EE polarization power spectrum (Crites et al. 2014)

• SPTpol Cluster Survey

- Wedding-cake survey: shallow (1000 deg²) and deep (500 deg²) regions
- *•Expect to find ~600 clusters, more than SPT-SZ!*

Future SPT-3G, CMB-S4 Surveys

SZ cluster counts will increase by orders of magnitude with future surveys:

SPT-SZ/pol: *N***clust ~ 1,000** $SPT-3G: N_{\text{clust}} \sim 10,000$ $CMB-S4: N_{\text{clust}} \sim 100,000+$

Deep CMB data enables CMB cluster lensing as a mass calibration tool for cluster cosmology:

> *SPT-3G: (M) ~ 3% CMB-S4:* σ (*M*) < \sim 0.1%

Especially promising for cluster masses at *z > 1*