Galaxy Clustering + Galaxy-Galaxy Lensing

Youngsoo Park for the TCP WG

With contributions from WL + LSS + Sim WG's

DES Chicagoland Meeting, December 9th 2004

- How does Dark Energy affect growth of structure?
- How do we investigate that with DES?

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\circ}$ $\,$ Galaxy positions and shapes $\,$

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\circ}$ $\,$ Galaxy positions and shapes $\,$
- Anatomy of the clustering observable

$$w(\theta) \to P_{gg}(k, z) \to b_g^2 \cdot D^2(z) \cdot A_s \cdot k^n T^2(k)$$

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\circ}$ $\,$ Galaxy positions and shapes $\,$
- Anatomy of the clustering observable

$$w(\theta) \to P_{gg}(k,z) \to b_g^2 \cdot D^2(z) \cdot A_s \cdot k^n T^2(k)$$

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\odot}$ $\,$ Galaxy positions and shapes $\,$
- Anatomy of the clustering observable

$$w(\theta) \rightarrow P_{gg}(k, z) \rightarrow b_g^2 \cdot D^2(z) \cdot A_s \cdot k^n T^2(k)$$

Galaxy Bias Growth History Initial Condition

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\circ}$ $\,$ Galaxy positions and shapes $\,$
- Anatomy of the clustering observable

$$w(\theta) \rightarrow P_{gg}(k, z) \rightarrow b_g^2 \cdot D^2(z) \cdot A_s \cdot k^n T^2(k)$$

Galaxy-Galaxy
Lensing Galaxy Clustering Planck
Priors

- How does Dark Energy affect growth of structure?
 - Distinct histories: LCDM, wCDM, Modified Gravity, ...
- How do we investigate that with DES?
 - $_{\circ}$ $\,$ Galaxy positions and shapes $\,$
- Anatomy of the clustering observable

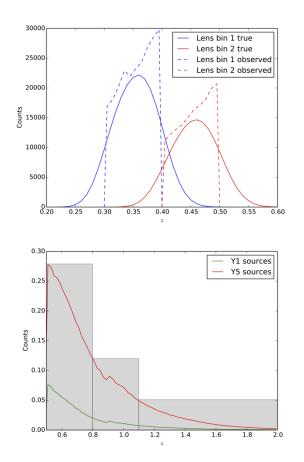
$$\begin{split} w(\theta) & \to P_{gg}(k,z) \to b_g^2 \cdot D^2(z) \cdot A_s \cdot k^n T^2(k) \\ \hline & & & \\ & &$$

Modeling Details

- Lensing: NFW gamma + satellites as off-centered NFW
- Clustering: Linear P(k) with linear Tinker bias
- Shared Systematics
 - Halo mass function + HOD for a threshold sample

$$\frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\log M_{\rm h} - \log M_{\rm min}^{\rm t}}{\sigma_{\log M}^{\rm t}}\right) \right] \left[1 + \left(\frac{M_{\rm h}}{M_{1}^{\rm t}}\right)^{\alpha_{t}} \right]$$

Gaussian photo-z scatter for lenses and sources

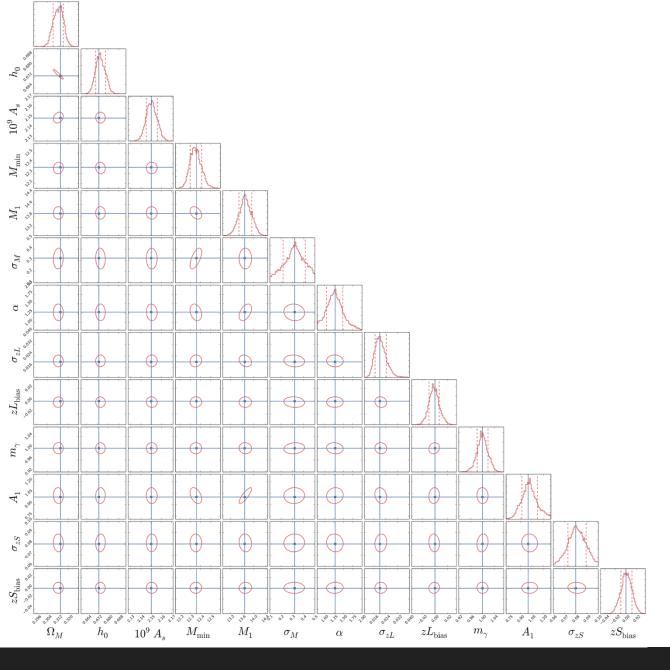

$$p(z_{
m ph}|z) = rac{1}{\sqrt{2\pi}\sigma_z} \exp\left[-rac{(z-z_{
m ph}-z_{
m bias})^2}{2\sigma_z^2}
ight]$$

- Multiplicative/additive shear calibration
- Growth scaling parameters

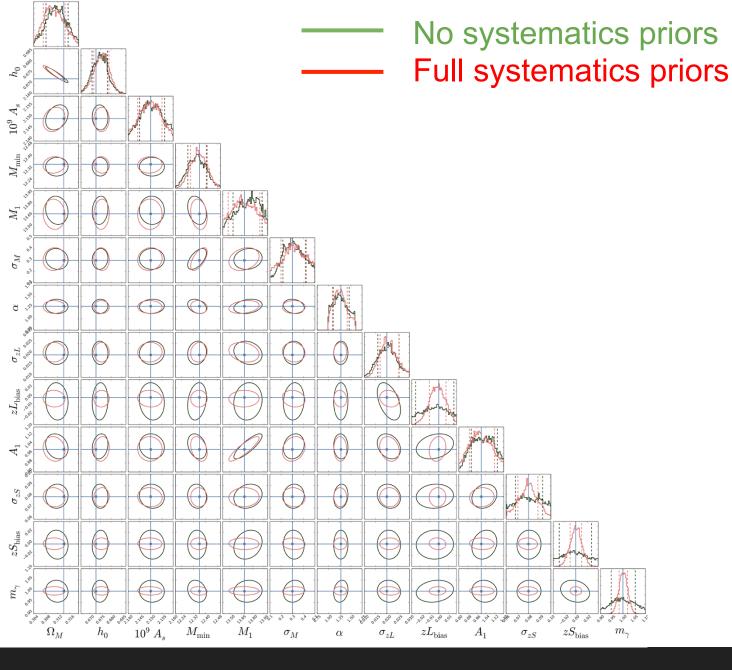
$$\tilde{D}^2(z) = A_i D^2(z)$$

Mock BCC Catalogs

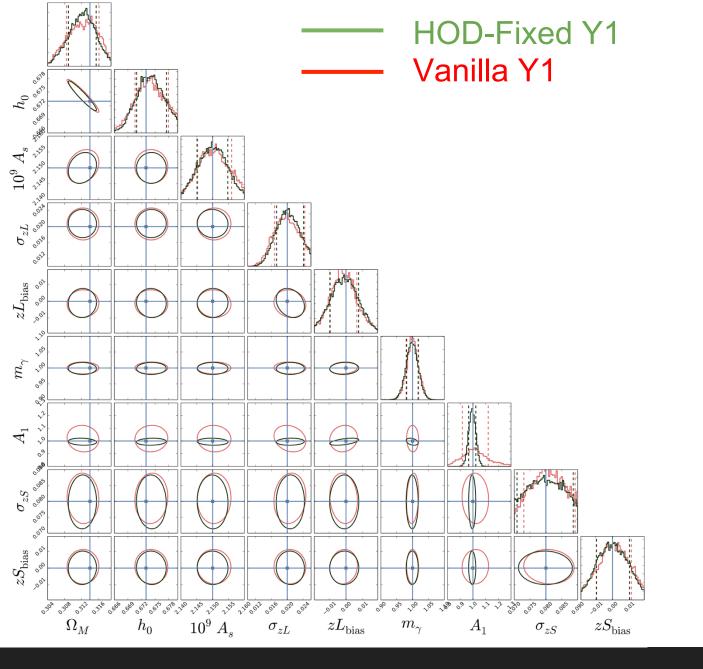
- Down-sampled BCC Aardvark catalogs
 - \circ Y1: 1000 deg², mr < 23.0
 - \circ Y5: 5000 deg², mr < 23.5
- Lens bins
 - \circ 0.3 < z < 0.4, Mr < -21.5
 - \circ 0.4 < z < 0.5, Mr < -21.0
 - Universal for Y1 and Y5
- Source bins
 - 0.5 < z < 0.8
 - 0.8 < z < 1.1
 - 1.1 < z < 2.0



Likelihood Analysis


• Parameter Space

Cosmology	Ωм, ho, As	3
HOD	Mmin, M1, σм, α	4 X 2
Lens Photo-z	σ _{zL} , b _{zL}	2 X 2
Growth scaling	Ai	1 X 2
Source Photo-z	σzs, bzs	2
Shear Calib.	m, b	2


- Priors: Planck, Gaussian priors for systematics
- Simulated data, full joint covariance matrix from BCC

Full Y1 Forecasts

Impact of Systematics on Y1 Forecasts

Impact of HOD on Y1 Forecasts

Summary of Constraints

	Y1 w/o Systematics Priors	Full Y1	Y1 w/ Fixed HOD
Ω _M	±1.20%	±1.17%	±1.07%
h _o	±0.54%	±0.53%	±0.49%
A _s	±0.26%	±0.25%	±0.23%
M _{min}	±0.51%	±0.45%	
M ₁	±1.38%	±1.48%	
σ_{M}	±29.6%	±32.5%	
α	±12.5%	±11.4%	
σ_{zL}	±24.7%	±20.5%	±17.1%
b _{zL}	±0.020	±0.0089	±0.0087
σ_{zS}	±13.4%	±10.6%	±10.6%
b _{zS}	±0.025	±0.010	±0.010
m	±4.88%	±1.89%	±1.89%
A ₁	±10.9%	±10.9%	±2.81%

Conclusions and Lessons

- We can constrain history of structure growth!
 - Y1: P(k,z) at 10% (D(z) at 4.9%)
- Certain priors play important roles
 - Constraining power + *degeneracy breaking*
 - Planck priors on As
 - HOD Priors will have big impact
 - Ai is remarkably robust with respect to many systematics
- Near future goals
 - In full production mode, draft to internal readers by mid-Dec.
 - Attack SV data soon

Thank you!