DES: Weak Lensing shape measurements from SV

Vinu Vikram Argonne

WL Working Group

Jarvis et al (in prep) Vikram et al (in prep)

- Introduction
- Shape catalogs
- Summarize tests of measured shape
- **Preliminary** WL mass map which is the largest contiguous map to date

Weak lensing

• Foreground mass distribution magnifies and distort the shapes of randomly oriented background galaxies

Picture courtesy: C. Chang

Weak lensing

P. Scheider 2001

Shape in reality

Nolensing
$$\Rightarrow \langle e_i \rangle = 0$$
; $WL \Rightarrow \langle e_i \rangle = \gamma \pm \frac{\sigma_e}{\sqrt{N_{gal}}}$ Picture courtesy: C. Chang

DES shape measurement pipeline

Im3shape:v7 & ngmix-009

- Im3shape (Zuntz et al 2011)
 - Bulge + Disk model for galaxy
 - Maximum likelihood method
 - ~10M (pre-selected), ~4 per sq. arcmin (default flag, mask, radius, S/N, MODEST_CLASS)
- ngmix (Erin Sheldon)
 - Mix of Gaussians
 - Bayesian
 - ~24M, ~12 per sq. arcmin (default flag, S/N)

• Looks good

• PSF - Galaxy correlation

Slope ~ 2.5e-2 (7e-2 for SV)

Figure: Erin Sheldon

- Looks good
 - 2-pt B-mode consistent with zero

Figure: Matt Becker

- Remaining known issues
 - Some dependence with mask fraction, possibly due to the residual light from neighbors
 - Some dependence with stamp size
- Conservative selection can be made

Mass map and foreground galaxy kappa

- Background: 0.6 < z < 1.2 & Foreground: 0.1 < z < 0.5
- Photoz based on DESDM neural network
- Source density ~ 2 to 8 objects per sq. arcmin
- Shape measurements objects with S/N > 20
- Noise bias correction
- Conservative cuts to reduce mask fraction & stamp size effect
- Foreground objects
 - Magnitude limited sample (i < 22)
 - RedMaPPer clusters and LRGs (Rykoff et al, in prep)

Mass map and redMaPPer clusters

Cross correlation

Systematic Error

Conclusion

- Shapes measured for SV data
- Shape measurement pass many null tests
- •8-10 sigma detection between lensing and galaxy maps
- Keep improving

Thanks!

Additional slides

- Looks good
 - PSF residual correlation (a.k.a Rowe statistics)

Residual-Residual

Figure: Mike Jarvis

- Look good
 - Tangential shear around stars
 - Stacking around random locations
 - Stacking around image center
 - Etc.

Jarvis et al. (in prep)

Weak lensing convergence map: a.k.a mass map

- The projected total mass distribution in the Universe
- Galaxy bias
- How the total matter distribution w.r.t. to baryonic matter
 - Correlation analysis with ROSAT/Planck/SPT
 - Already seeing strong correlation between x-ray and mass map
- Cosmology based on peak statistics & higher order moments
- Detect voids, filaments and super structures

Mass mapping methods

• Kaiser-Squires inversion (Kaiser & Squires 1993)

$$\begin{split} \gamma(\boldsymbol{\theta}) &= \frac{1}{\pi} \int_{\mathbb{R}^2} \mathrm{d}^2 \boldsymbol{\theta}' \, \mathcal{D}(\boldsymbol{\theta} - \boldsymbol{\theta}') \, \kappa(\boldsymbol{\theta}') \;, \\ \mathcal{D}(\boldsymbol{\theta}) &\equiv \frac{\theta_2^2 - \theta_1^2 - 2\mathrm{i}\theta_1 \theta_2}{|\boldsymbol{\theta}|^4} = \frac{-1}{(\theta_1 - \mathrm{i}\theta_2)^2} \end{split}$$

- B-mode can be measured with 45 degree rotated shapes
- Phase prior method based on foreground galaxy distribution (Szepietowski et al. 2014)

BCC Simulation

Systematic analysis: photoZ

Systematic analysis

Conclusion

- Measured and tested ~130 sq. degree weak lensing data from DES $_{\rm SV}$
- Systematics in shapes are within statistical error : very encouraging
- \bullet Generated largest weak lensing mass map to date with ${\sim}10$ sigma correlation between foreground
- Improving!
- Detail talk on January 30th!

Ongoing

Understanding the super structures in the WL map and where is the mass comes from?

- Counting peaks in the map
- Estimating moments
- Cross correlation analysis with ROSAT, Planck and SPT maps

•

Following tests

- Source selection & density
- Changes between im3shape versions (v6 to v7)
 - Maps
 - Cross Correlation
 - RM Clusters on maps
 - Stacked cluster & LRG profiles
- Maps based on ngmix
- Systematics in the selection of background objects

Draft

Wide-Field Lensing Mass Maps from DES Science Verification Data

V. Vikram,¹ C. Chang,² B. Jain,¹ D. Bacon,³ A. Amara,² M. Becker,⁴ S. Bridle,⁵ D. Brout,¹ M. Busha,⁴ M. Jarvis,¹ H. Lin,⁶ P. Melchior,⁷ E. Rozo,⁴ E. Rykoff, ⁴ C. Sánchez, ⁸ E. Sheldon,⁹ R. Wechsler,⁴ J. Zuntz,⁵ + ...

¹Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

²ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

³Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth PO1 5AR, United Kingdom

⁴KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309, USA

⁵University College London

⁶Fermilab

⁷Ohio State University

⁸Institut de Fisica d'Altes Energies

⁹Brookhaven National Laboratory

Source selection (Fiducial sample)

- Im3shape-v7
 - ~130 sq. degrees
 - 1869787 objects with ERROR_FLAG = 0 & INFO_FLAG=0
 - These objects have S/N > 20 and noise bias may be minimal
 - MAG_AUTO_r < 25
 - Redshift (DESDM) between 0.6 and $1.2 \rightarrow$ gives 800411 objects
 - ~1.7 objects per sq. arcmin
- Ngmix-009
 - ~130 sq. degrees
 - Redshift (DESDM) between 0.6 and $1.2 \rightarrow$ gives 3409357 objects
 - ~7.3 objects per sq. arcmin

im3shape v6 to v7 Structures don't change

im3shape v6 to v7 Changes in E mode

v6 to v7 Kappa B

v6 vs v7

- sigma_e / sigma_b = 0.995 to 1.031
- CC between v6 and v7

CC v6 to v7

kg vs kE increases at large scale
Correlation between B-modes decreases at large scale

Stacked RM cluster profiles

Stacked RedMaGiC LRG profiles

Ngmix 009 (preliminary)

- Looks like it works well!
- Low B-mode
- · I argo correlation hotseoon F and R mode at large goals

Im3shape v7 & Ngmix 009

Systematics in source selection

Flags fA to fF based on negative disc component (may be a proxy for background)

- Disk_A=-0.65 <e1>=-3.96e-04 <e2>=6.95e-04 fraction=0.93
- Disk_A=-0.60 <e1>=-4.14e-04 <e2>=6.17e-04 fraction=0.91
- Disk_A=-0.55 <e1>=-4.84e-04 <e2>=5.87e-04 fraction=0.89 • Disk_A=-0.50 <e1>=-5.51e-04 <e2>=4.96e-04 fraction=0.86 • http://nbviewer.ipython.org/github/vvinuv/ipynb/blob/master/neighbors-v7.ipynb

Systematics in source selection

• Flag fG is based stamp_size = 48 & radius > 3.5 $\langle e1 \rangle = -5.52e - 0.4 \langle e2 \rangle = 5.64e - 0.4$ fraction=0.95

- Map as a function of mask fraction
- Map as a function of stamp size
- Which is the better metric is access the quality of the map?

Super Structures

- $\sigma_{e} = 0.3$
- NOT peaks!

Super Clusters (10 arcmin)

- Mass from shear & galaxies matches very closely
- There are issues sometimes

(Super) voids (20 arcmin)

Super clusters (ngmix-009)

0.010

Super peaks : κ_a (20 arcmin)

-0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008

Map repository

- Several xcorr projects are identified based on mass map
- A repository of mass maps with different parameters
- Easy to use and communicate