

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Fermilab Trigger and DAQ Roadmap

Kurt Biery CPAD Workshop 06 October 2015

Fermilab Environment

Neutrino Experiments

DUNE, SBND, NOvA, MicroBooNE, MINOS, CONNIE, etc.

Dark Matter & Dark Energy

DESI, DAMIC, DarkSide, etc.

Involvement in CMS

R&D

MKIDs

Active testbeam program

Generally manageable data rates (streaming DAQ)

- Mu2e: ~30 GB/s into processor farm (HLT)
- DUNE: 4.6 TB/s before ZS, several GB/s after ZS

Time-window-based events

Detector R&D Activities in Fermilab SCD/RSE*

Direct Involvement

- MKIDs
- CONNIE/DAMIC
- Optical Links
- Rad-Hard Sensors
- CAPTAN+X
- Testbeam Detectors & DAQ

Indirect & Support Activities

- Off-the-Shelf DAQ
- artdaq
- RTI DDS SBIR(s)
- PREP
- Teststands

^{*} Scientific Computing Division, Real-Time Systems Engineering Department

Fermilab SCD/RSE Engineers, Developers, and Scientists

DAQ Controls and Detectors group

Gustavo Cancelo, Ted Zmuda, Ken Treptow, Neal Wilcer

Detector Electronics group

 Ryan Rivera, Alan Prosser, Mark Bowden, Rick Kwarciany, Greg Deuerling, John Chramowicz

Physics Research Equipment group

Lorenzo Uplegger, Jason Greskoviak, Thinh Pham

Real-Time Software Infrastructure group

 Ron Rechenmacher, Gennadiy Lukhanin, John Freeman, Eric Flumerfelt, Wes Ketchum

MKID: Superconductor Detectors for Optical-NIR Cosmology

- Pixelated RF resonator array.
 - 1,000 pixels multiplexed in frequency coupled to each RF feed/readout-line.
- Superconducting sensors with MeV energy gap. More than just a single photon detector:
 - Can provide energy resolution ($E/\Delta E$) in the visible and near infrared spectrum of ~80 to do low resolution spectroscopy at large scale without filters, and photon tagging with 1usec resolution.
 - Low resolution spectroscopy of >1 billion galaxies, QSO and other objects from DES & LSST data. (No other known instruments can do that).

Two-Board Readout

Fermilab electronics

- Fermilab electronics generates MKIDs excitations and readout MKID signals at 4 Gs/s. Converts IF from/to RF with a wide bandwidth and high gain design.
- The signal processing is shared between the AC/DAC board and the CASPER2 board.

A 10K to 20K pixel Fermilab DAQ

- MKID signal generation:
 - 8 GB/s for 1K pixel. 80GB/s 10K pixel system.
 - Tunable frequency and power for each resonator.
- MKID acquisition:
 - 6 GB/s for 1K pixel. 60GB/s for a 10K pixel system.
- Scalable to 20K (even 30 K) pixel is reasonable.
- Data output bandwidth is about ~100 MB/s
 - 1K photons/pixel/s, 10K pixels, 10 B/photon.
 - Data crunching of x1000 in the FPGA.
- Software pipeline runs on main computer.
 - Inherited from ARCONS project (UCSB).

Further MKIDs Development

100K pixel instrument architecture

- Faster DACs and ADCs to allow for more channels per RF feed line.
 - Goal: 2000 MKIDs per feed line, frequency multiplexed at 2 MHz separation between MKIDs.
- 50 total RF feed lines. (i.e. 50 in, 50 out).
 - 50 RF up/down converters and low noise amplifiers (5 kelvin noise temperature).
- Improved signal and data processing to channelize 2000 MKIDs per feed line.
- Calibration using RF and optical signals.
- High bandwidth:
 - Baw data: 400 GB/s
 - Trigger-less DAQ.
 - Data reduction: ~200 MB/s to storage.

Uses in post-LSST spectroscopy and more.

CCDs for Dark Matter Searches and Neutrino Studies

DAMIC at SNOLAB

CONNIE at Angra 4GW nuclear reactor

A CCD detector box hosts 20, 8 Mpixel CCDs.
CCDs work at 140K and vacuum

CONNIE and DAMIC Upgrades

- A 1 Kilogram detector requires on the order of 100 CCDs with 36 Mpixels each.
- A 1 Kg detector will have more pixels than LSST and 100 times the CCD mass of LLST.
- Fermilab has completed the R&D for a new DAQ compatible with 1 Kg detector.
- The design is undergoing with the goal of operating in late 2016 or early 2017.

Analog and digital
Multiplexer R&D
(left and right
pictures respectively)

Optical Links

Participating in the Versatile Links+ project

- VL & VL+ are common projects of ATLAS and CMS to develop the optical physical layer for the GBT-based data links
- Successfully developed bi-directional/configurable single mode or multi-mode data links operating at 4.8 Gbps and resistant to calorimeter grade radiation levels
- VL+ goals are development of array optics in flexible formats (division between Tx and Rx channel counts)
- Fermilab role is testing and evaluation of commercial (not rad-hard) receiver components
- May be an opportunity to contribute to system specification and testing for VL+

Optical Link Test and Measurement Facilities

Labview VIs (Histogram Analysis) Digital Signal Analyzer (Eye Patterns, Jitter) Eve Pattern Measurements Optical Modulation Amplitude Histogram OMA=Level1-Level0 Time **Variable Optical Attenuators** (Receiver Sensitivity) BERTScope BSA12500B (BER Testing) **Environmental Chamber** (Temperature/humidity test)

Rad-Hard Sensor R&D

- Testing sensor candidates for CMS HL-LHC upgrade, before and after irradiation; comparing performance
- Current focus on 3D and thin silicon n-on-n and n-on-p; also testing new prototypes designed at Fermilab with smaller pitches and slimmer edges
- Working in close collaboration with SINTEF which will provide thinned sensors down to 100um
- Currently limited by Read Out Chip (ROC) radiation hardness, but new ROCs soon
- Continue to test sensor prototypes, before/ after irradiation, until proven suitable for HL-LHC; successful sensors used in inner layer of pixel detector for Phase II upgrade

CAPTAN+X

- Compact And Programmable daTa Acquisition Node
- CAPTAN+ ("CAPTAN plus") is the next generation CAPTAN card.
 - A leap from Xilinx 4 series to 7 series.
 - The 'X' stands for "eXtreme" for its support of 10G links.

Features:

- Gigabit Ethernet
- 4 FMC connectors
 - 2 HPC, 2 LPC
 - High-speed Links per FMC:
 - SE=10, NW=4, NE=1, SW=1.
- 400 GPIO

CAPTAN+X Uses and Plans

- Originally developed in 2008/2009, the CAPTAN system was designed to handle common data acquisition, control, and processing tasks.
- Examples of such applications are tracker readout systems, R&D test stands, and parallel data processing.
- Modular, so it can be used in a wide range of applications.
- Groups at Fermilab and other institutes in the US, China, and Europe have acquired the system for their test-stands. We worked with them to provide hardware and software support.
- Will be used in our Off-the-Shelf DAQ, optical link testing, and other efforts.

CAPTAN+X (10 MGbps lanes on HPC FMC for parallel BER test capabilities)

Testbeam Detectors and DAQ

- The pixel telescope is 8 silicon pixel planes leftover from CMS, with space for 2-4 DUTs in the middle. Pixel size is 100 μm x 150 μm. Data acquisition with the CAPTAN system.
- Newer strip telescope is based on CAPTAN too. Dead-timeless, 16cm² coverage, and 5µm track resolution.

Testbeam Opportunities

- Testbeam is our test bed for Off-the-Shelf DAQ (more on this later) and other initiatives
- It would be very nice to have easy-to-use DAQ system with integrated detector readout (strips, wire chamber, transient detectors)
 - Mandy and her team have succeeded in getting MIDAS running; OtS DAQ and artdaq could be complementary or integrated/bridged

Investigation of Internet-of-Things Hardware

Trends:

- <u>Tighter budgets</u> for experiments leading to reluctance to subsidize DAQ development.
- Industry moving from centralized crates and backplane systems to <u>distributed systems</u> connected by high speed links.
- Ethernet and Internet Protocol has been the one communication technology standard that has far outlived any other. IoT market value was \$1.9 trillion in 2013 and estimated up to \$19 trillion by 2020.
 - \$6K for a 1U 48-port 10G Ethernet switch with throughput > 1000 VME Crates!

Off-the-Shelf DAQ LDRD

- 2 years of effort for OtS DAQ <u>proof-of-concept</u>:
 - Survey the market for candidate IoT boards.
 - Focus on 1 board in each range (Low, Mid, and High) to populate initial menu.
 - Develop a JavaScript GUI for control and readout using web browser.
 - Develop host and embedded APIs for socket based communicated between artdaq and candidate boards.
 - Develop sample reusable firmware components.
 - Test and catalog available features and supported data rates.

Off-the-Shelf DAQ Model

 We are developing a <u>low cost</u>, data acquisition architecture <u>as a service</u>, based on commercial <u>loT</u> technology that is <u>scalable</u> from a few MBytes/sec to hundreds of GBytes/sec.

Off-the-Shelf DAQ - Status

Demonstration of detector readout (at FTBF)

Development of the OtS DAQ web site

artdaq: DAQ software framework

artdaq Features

- Core functionality provided; experiment-based customizations expected
- Data streaming with event filtering
- Integration with art analysis framework
- Easy configuration of number and location of processes in a distributed system
- Data written to disk in ROOT format

artdaq Timeline

Sample DS-50 online monitoring histograms

artdaq Future Plans

- DUNE, Mu2e, SBND, others
- Multi-layer systems
 - Software <u>triggering</u>; flexible disk-writing and analysis options
 - DUNE: trigger on events with zero-suppressed data and store full data from accepted events
 - Mu2e: trigger on tracker and calorimeter data and read out CRV for accepted events
 - SBND: write supernova stream locally on readout PCs
- Use of RTI DDS (Phase II SBIR)
- Distributed Monte Carlo particle generation
- Common Run Control? (DUNE and SBND)

DOE Phase-II SBIR – RTI DDS

"Scalable High Performance Data Distribution Middleware for High Energy Physics Applications"

- Real-Time Innovations, Inc.
 - Their focus is on the industrial internet of things (IIoT)
- SBIR timeframe: April 2014 April 2016

Middleware is RTI DDS (Data Distribution Service)

- DDS is OMG specification, v1.0 in 2003...v1.4 in 2015
- Loosely-coupled publish-subscribe communication
- Resilient to faults; data-centric architecture
- Flexible quality-of-service for data delivery
- RTI involved in the development of the specification and creation of their implementation (RTI Connext)

RTI DDS

Phase-II SBIR technical objectives:

- Fast zero-copy transport for structured data over Infiniband
 - Transfers between application-level memory regions using position independent data structures
- Safe, efficient, and portable DDS API for Modern C++
 - Easier-to-learn and safer API; clean migration to C++11
- Queuing and Request/Reply over DDS
 - Load balancing across queue consumers
 - [something about request/reply]
- Developing C++ applications without IDL
 - Header files can be annotated to define messages

Zero-copy is still under development, rest are available now.

Uses of RTI DDS in artdaq

Distributing events to online monitoring

- Loose coupling means that consumers may come and go
- DDS content filtering could provide trigger selection without any extra code in artdaq

Graceful handling of failed processor nodes

 The queuing service could automatically re-route data around failed nodes

Ease of use

- Message definition without IDL; Modern C++ API
 Take advantage of future enhancements to RTI DDS
- Security enhancements for WAN; web-based technologies
 Ongoing discussions about licensing

RTI DDS in EPICS

- New SBIR proposal being considered, RTI and folks from BNL (STAR)
- We would be very interested in the progress and results of this SBIR
- This could give us a handle on making a step toward providing systems that provide both DAQ and slow controls

Physics Research Equipment Pool (PREP)

"Provides and supports electronic instrumentation for high energy physics research"

- Very successful
- Easy-to-use commercial modules
- 50-100 items checked out per month
- Modules are showing their age

Lorenzo Uplegger (PREP manager) has proposed modernization efforts; described at earlier CPAD meeting, initial prototype submitted to Fermilab LDRD program

PREP in the FPGA Era

Vision: gradually replace aging commercial electronics with general-purpose FPGA boards and appropriate daughter cards

Initial candidate: NIM coincidence module

Teststands

Common tools for teststands, testbeam, full experiments

- Get started quickly and expand as needed
- Reduce "integration" time

Standard pattern(s) for computers, networking, OS

Working with infrastructure experts to define patterns

Detector R&D Roadmap for FNAL SCD/RSE

Direct Involvement

- MKIDs 10K or 20K pixel instrument at SOAR in 2016; possible use in CMB; Phase 2 100K pixel or larger system
- CONNIE/DAMIC DAQ for 1kg detectors
- Optical Links system specification and testing for Versatile Link+
- Rad-Hard Sensors continued testing of candidate detectors
- CAPTAN+X deployment; reusable firmware blocks
- Testbeam Detectors and DAQ ready-to-use system

Detector R&D Roadmap for FNAL SCD/RSE

Indirect and Support Activities

- Off-the-Shelf DAQ complete the LDRD; work with testbeam, experiment, and university users
- artdaq continue to partner with experiments; enhance functionality with RTI DDS; expand core functionality
- RTI DDS SBIR(s) continue to provide input to RTI;
 incorporate DDS into artdaq; watch EPICS SBIR progress
- PREP prototype NIM coincidence module; wider use of PREP model? (mentioned in workshop intro.)
- Teststands refine model; work with experiments and universities

Mu2e DAQ System Design

- architecture supports both
 streaming (Tracker, Calorimeter) and
 triggered (CRV) readout
- DAQ Servers handle data readout, event building and processing
- bidirectional front-end interface for fast control and readout
- large front-end buffers for uniform data transfer
- all commercial DAQ hardware
- scalable... 1 GByte/sec per DAQ server

Mu2e Data Transfer Controller

Commercial card (Hitech Global HTG-K7-PCIE with FM-S18 FMC adapter)

Firmware and software working for control commands and data readout. Full data chain has been exercised. Pilot system with 6 DTCs/PCs ready soon.

Clock and control command fan-out functionality (dedicated PCIe card) being developed now.

