

New technology and b physics at LHCb

Seeking New Physics

- Flavor Physics as a tool for NP discovery
 - While measurements of CKM elements (fundamental constants) are fun, the main purpose is to find and/or define the properties of physics beyond the SM
 - FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is the Lamb shift in atomic hydrogen

Already excluded ranges from box diagrams

$$\Box \ \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{C_i}{\Lambda^2} O_i, \text{ take } c_i \sim 1$$

Ways out

- 1. New particles have large masses >>1 TeV
- 2. New particles have degenerate masses
- 3. Mixing angles in new sector are small, same as in SM (MFV)
- 4. The above already implies strong constrains on NP

CPAD Instrumentation Front

See: Isidori, Nir & Perez arXiv:1002.0900; Neubert EPS 2011 talk

The Forward Direction at the LHC

- The primary pp collision produces a pair of b̄b quarks. They then form hadrons. In the forward region at LHC the b̄b production σ is large
- The hadrons containing the b & b quarks are both likely to be in the acceptance. Essential for knowing if a neutral B meson started out as a B⁰ or B⁰, determined by "flavor tagging"
- At L=4x10³²/cm²-s, we get ~10¹² B hadrons in 10⁷ sec in detector

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

5

Detector Geometry Complementary to ATLAS & CMS Much less expensive

Detector performance

Successful run 1 operation Typical resolutions

identification

CPAD Instrumentation Frontier Meeti

Triggering 2012

40 MHz bunch crossing rate

Mixture of exclusive and inclusive

5 kHz Rate to storage

2 kHz

Inclusive/

Exclusive

Charm

time constraints

2 kHz

Inclusive

Topological

selection algorithms

Trigger is crucial as $\sigma_{b\overline{b}}$ is less than 1% of total inelastic cross section and B decays of interest typically have *B* ranching ratios of <10⁻⁵

Hardware level (L0)

Search for high-p_T μ , e, γ and hadron candidates

Software level (High Level Trigger, HLT) Farm with Ø(29000) multi-core processors) Very flexible algorithms, writes ~5 kHz to storage

This is the bottleneck

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

1 kHz

Muon and

DiMuon

Triggering 2015

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

- Calibration is done completely online
- Event reconstruction is done online & not repeated
- Turbo stream implemented for some analyses: only tracks & vertices that satisfy trigger

Off to a good start

LHCb upgrade

- Triggering 2020- No 1 MHz limit, all triggers done by reading out full detector at 40 MHz & using only software to decide.
- All detector elements are being rebuilt to allow this to occur
 - New pixel vertex locator (VELO)
 - New Upstream Silcon Tracker (UT)
 - RICH HPD's replaced by PM's
 - New Ecal & Muon readouts (minor changes)
 - More trigger & online computing
- **Consequences: increased** ε_{tria}, more lines

Detector Performance

- Current detector works better than expected
- Run at 4x10³² cm⁻²/s instead of 2x10³², with fewer bunches in the machine which is more difficult ~<1.5> interactions/crossing
- Detector efficiency >95% for all systems
- Problems: Vertex resolution slightly worse, flavor tagging somewhat poorer
- Luminosity is leveled small changes of L with time; beams are brought closer together when currents decrease

A few results

CPAD Instrumentation Frontier Meeting O Does this diagram exist? 15

Reduced model with 2 P_c's

Do a full amplitude fit. No solution with zero or one P_c states. Best fit has two states, masses 4380±30 MeV, & 4450±3 MeV with J^P=(3/2⁻,

5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are allowed

- Need to find new states & new decay modes
- Many predicted, e.g. $P_c \rightarrow \Lambda_c D^*$, $\eta_c p$ high multiplicity final states

Neutral Meson Mixing

- Neutral mesons can transform into their anti-particles via 2nd order weak interactions
- Short distance transition rate depends on

New particles possible in loop

mass of intermediate *q_i*, the heavier the better, favors s & b since t is allowed, while for c, b is the heaviest

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

20

- Small CPV expected, good place for NP to appear
- B_s→J/ψφ is not a CP eigenstate, as it's a vectorvector final state, so must do an angular analysis to separate the CP+ and CP- components

LHCb Upgrade

- Goals: run at \mathcal{L} up to 2x10³³ cm/s with double efficiency on B→hadrons (x10)
- Move to an all software trigger with higher output ~50 kHz
- Higher density tracking elements
 - New pixel VELO
 - New Si strip TT called UT (US responsibility)
 - New Outer Tracker made of scintillating fibers
 - RICH switching to MAPMT's
- This upgrade is funded

Beyond the 1st Upgrade

PID improvement: Torch

- Lower p particle ID cannot separate K/p below 10 GeV/c
- R&D being done on time-of-flight device that

measures the time of arrival of particles in a quartz plate plus the time it takes the internally reflected Cherenkov light to traverse a quarks plate, by measuring its angle using MCP's.

Promises full K detection up to 10 GeV/c

Possible additional improvements

Besides increasing luminosity which will require specific detector changes

What follows are only my speculations

Remove 250 µm thick RF foil, separating beam vacuum from VELO

vacuum & replace withwires to absorb imagecharge from the beam.ßWould improve vertexresolution significantly

CPAD Instrumentation Frontier M

Augmenting the tracking

- Increase tracking acceptance especially for lower momentum
- Examples of LHCb tracks –
 Upstream tracks typically have ∆p/p~15%, not useful for most physics. So put detectors on the inside faces,
- get excellent ∆p/p
- Increases ε of some b \rightarrow 6
- track final states by ~x3

- LHCb could do more with an excellent E&M calorimeter
- Although final states such as B→K*γ have been done by LHCb, the efficiencies are relatively low & the resolution relatively poor
- π^0 's are more difficult
- PbWO₄ would be interesting, but it would cost as much as CMS. Note ½ of the solid angle could be covered for ¼ of the cost.

Physics import

- Many physics reasons to have as good as possible γ, π^0 , & η reconstruction & e⁻ id
 - **•** Ke⁺e⁻/Kµ⁺µ⁻, now $0.75_{-0.07}^{+0.09} \pm 0.04$, NP?
 - η_c decays mainly neutrals, $B \rightarrow K\pi^0$, etc..
- However, this will be more difficult for *higher* luminosities
- Ecal design was for ~1 int/xing, Phase I upgrade 7.5 int/xing, Phase II at least 20 int/ xing & likely higher

Possible improvements to γ & e⁻ detection

- Better segmentation, reduces shower overlaps
- Better position resolution
- Time photons: If TOF is known to ~4 ps we can determine the parent primary pp interaction. The bunch σ_z design is 7.55 cm, corresponding to σ_t of 350 ps. Use charged tracks from each primary & measure the time difference. Very useful at ~20 int/crossing
- Better angular resolution

Vertexing

- LHCb beam size is σ =7.6 cm, giving an interaction region length σ =10.7 cm
- It takes about 300 ps for beams to cross each other, so there is on average 30 ps between collisions for 10 int/xing
- Time info is different than position info

Vertexing y's Having sorted the charged tracks into pv's we next address the photons

- Each pv (+b decays) has a set of γ's associated to it & only it. The time is set by the charged tracks. Since they are mostly highly relativistic they move almost in time with the γ's.
- Thus we can find out which γ's come from which pv & associated b's (but not separately)

Better Segmentation

Current ECAL

	Inner section	Middle section	Outer section
Inner dimension, $x \times y$, cm ²	65×65	194×145	388×242
Outer dimension, $x \times y$, cm ²	194×145	388×242	776 × 630
Cell size, cm ²	4.04×4.04	6.06×6.06	12.12×12.12
# of modules	176	448	2688
		Outer section :	
		121.2 mm cells	
		2688 channels	
		Middle section :	
		60.6 mm cells	
		1792 channels	
		Inner section :	
		40.4 mm cells	
		1536 channels	

- Moliere radius (r_M) contains 90% of the shower currently is 3.5 cm. Other materials with smaller r_M are PbWO₄ 2.2 cm, W 0.9 cm.
- Possible to obtain γ position at mm level by having "thin" W layers alternating with Si
- Example: Calice proposal SiW, the thickness of the ECAL will be around 23 radiation lengths. Around 30 layers of silicon will be used, giving an energy resolution of about 0.16 / √E. There is about 2400m² of silicon sensors. Segmentation at 1x1 mm² level.

Timing

- Si readout can give timing to ~30 ps, & there are many layers
- Large area ps TOF: aim to time charged tracks or photons to 1 ps (See <u>http://psec.uchicago.edu/</u>)
- Have already achieved 4 ps
- Working on large area commercialization see

http://dx.doi.org/10.1016/j.nima.

2014.11.025

How it works

Requires large-area, gain > 10^7 , low noise, low-power, long life, $\sigma(t) < 10$ psec, $\sigma(x) < 1$ mm, and low large-area system cost Realized that an MCP-PMT has all these but large-area, low-cost: (since intrinsic time and space scales are set by the pore sizes- 2-20 μ)

The shower development is quite different for pions & electrons

• Limit on π/e rejection is the amount of charge exchange ($\pi^+ \rightarrow \pi^0$) in the first few Si layers

Ecal summary

- It may be possible to construct an upgrade Ecal that would allow LHCb to do full reconstruction of final states with γ's and have excellent π/e rejection at phase II upgrade luminosities
- It might involve excellent segmentation, position resolution, picosecond level timing & relatively poor energy resolution

Conclusions

- Many fundamental measurements have been made by LHCb
- LHCb has a bright physics future. Run II & the Upgrade will produce many more interesting results, either find or limit NP
- Augmenting the tracking and Ecal can provide much larger acceptances & thus the potential for seminal discoveries in many channels specifically for new physics searches or exotic spectroscopy or

Technical description

Microchannel plate based technology

pilot production of LAPPDs in 2015 and the delivery of commercial LAPPD tiles in 2016.

Flavor experiments at hadron colliders

- In the past: CDF & D0 (not designed for flavor)
- Now & foreseeable future: LHCb & some from CMS & ATLAS, both also not designed for flavor, but have capabilities especially on final states containing µ⁺µ⁻ & have 10x the LHCb ∫ ∠
- Triggering on b & c decays is a key issue
 - LHCb is >90% for muon final states & ~50% for pure hadronic decays
 - CMS & ATLAS only use dimuons & are less efficient
- Backgrounds: at e⁺e⁻ have only $B\overline{B}$, $\sigma_B/\sigma_{tot} \sim 1/4$, hadron colliders rely on detached b decay vertex

B decays with $\gamma \text{ or } \pi^0$ Suppose that we don't have any information

- Suppose that we don't have any information on the γ energy, but excellent position σ . We still can detect final states with a γ or π^0 .
- We take our Ecal with Si-W plus ps TOF, which gives us excellent γ position resolution & lets us consider γ's from only 1 interaction.
- Now consider $B \rightarrow a+b+\gamma$, where we measure

B b

the B direction, the **p** of a & ϕ_{γ}^{θ} b & the γ direction.

If we measured the B & γ energies, we would have 4 constraints of E & p, here we lack 2

γ or $π^0$ reconstruction Thus we have two constraints left, enough to

Thus we have two constraints left, enough to allow us to reconstruct the state

- One primitive method is to use the B direction to calculate the p_T of the γ , then use the γ direction wrt the B to get p_L , that gives us E_{γ} & p_{γ} , so the invariant mass of the $(a+b+\gamma)$ can be calculated $p_T(\gamma) = p_T(a) + p_T(b), \quad p_L(\gamma) = p_T(\gamma) \cot(\theta)$ $m_B^2 = (E_a + E_b + E_{\gamma})^2 - (\vec{p}_a + \vec{p}_b + \vec{p}_{\gamma})^2, \quad E_{\gamma} = |\vec{p}_{\gamma}|$
- Can also do π⁰; although you lose a constraint you get another one from the π⁰ mass
- Can do better with some Energy info

In principle want to sample as much energy as possible

Test results

- Already achieved 5 ps timing on 8"x8" area
- With 5 ps, have 0.5 mm resolution on γ origin, already beginning to be useful to distinguish among associated primary vertices, but really would like 1 ps ⇒ 0.1 mm resolution good enough to tell if its from a detached B decay

CPV measurements

- CPV measure: $a[f(t)] = \frac{\Gamma(\overline{M} \to f) \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$
 - Angle probed depends on M, i.e. B⁰, B_s, D⁰...& f
 - For $B^0 \rightarrow J/\psi K_s$, measure angle β , which is not predicted
 - □ For $B_s \rightarrow J/\psi f_0(980)$, $J/\psi \phi$, measure angle ϕ_s predicted from Other measurements to be small in the SM = -0.036 rad

Many NP models possible, not just Super-Sym

Evidence for $B_s \rightarrow \mu^+ \mu^-$

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

52

Top Down Analyses

Here we pick models and work out their consequences in many modes. Ex. (circa 2010):

- Define Heavy Flavor Physics
 - Flavor Physics: Study of interactions that differ among flavors: (quark flavors are u, d, c, s, b, t)
 - Heavy: Not SM neutrino's or u or d quarks, maybe s quarks, concentrate here on b quarks (some c), t too heavy

Zuminosity Leveling

 ∠uminosity is maintained as at a constant value of ~4x10³²/cm·s by displacing beams transversely
 Integral ∠ is 1/fb in 2011, collected 2/fb more in 2012

By definition
$$a_{sl} = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to \overline{f})}{\Gamma(\overline{M} \to f) + \Gamma(M \to \overline{f})}$$

at t=0 \overline{M} \rightarrow f is zero as is M \rightarrow f

• Here f is by construction flavor specific, $f \neq \overline{f}$

- Can measure eg. $\overline{B}_{s} \rightarrow D_{s}^{+}\mu^{-}\nu$, versus $B_{s} \rightarrow D_{s}^{-}\mu^{+}\nu$,
- Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at μ⁺μ⁺ vs μ⁻μ⁻
- a_{sl} is expected to be very small in the SM, $a_{sl}=(\Delta\Gamma/\Delta M) \tan\phi_{12}$, where $\tan\phi_{12}=Arg(-\Gamma_{12}/M_{12})$
- In SM (B°) $a_{sl}^{d} = -4.1 \times 10^{-4}$, (B_s) $a_{sl}^{s} = +1.9 \times 10^{-5}$

Also measure a_{sl}^{d} using $D^{+}\mu^{-}\nu, D^{+} \rightarrow K\pi^{+}\pi^{+}$

■ $a_{sl}^{d} = (0.93 \pm 0.45 \pm 0.14)\%$

a_{sl} according to D0

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

59

LHCb measurement

■ Use D_sµ⁻ν, D_s→φπ[±], magnet is periodicaly reversed. For magnet down:

- Effect of B_s production asymmetry is reduced to a negligible level by rapid mixing oscillations
- Calibration samples (J/ψ, D*+) used to measure detector trigger, track & muon ID biases

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

62

Extract B_s fractions

- Crucial to set absolute scale for B_s rates, since not given by e⁺e⁻ machines.
- Must correct for $B_s \rightarrow D^o K^+ X \mu \nu$, also $\Lambda_b \rightarrow D^o p X \mu \nu$ $f_s / (f_u + f_d) = 0.136 \pm 0.004^{+0.012}_{-0.011}$

B_s fraction - hadronic

Also can use hadronic decays + theory ~35 pb⁻¹

 $\sqrt{s} = 7$ TeV LHCb Preliminary

Semileptonics: $f_s / f_d = 0.272 \pm 0.008^{+0.024}_{-0.022}$

Detector Requirements - General

- Every modern heavy quark experiment needs:
 - Vertexing: to measure decay points and reduce backgrounds, especially at hadron colliders
 - Particle Identification: to eliminate insidious backgrounds from one mode to another where kinematical separation is not sufficient
 - Muon & electron identification because of the importance of semileptonic & leptonic final states including J/ψ decay
 - **α** γ , π^{o} & η detection
 - Triggering, especially at hadronic colliders
 - High speed DAQ coupled to large computing for data processing
 - An accelerator capable of producing a large rate of b's

CPV Time Evolution

- Consider $a[f(t)] = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$ Define $A_f = A(M \to f), \ \overline{A}_f = A(\overline{M} \to f), \ \lambda_f = \frac{p}{a} \frac{\overline{A}_f}{\overline{A}_f}$
- Only 1 $A_f \& \Delta \Gamma = 0 \Gamma(M \to f) = N_f |A_f|^2 e^{-\Gamma t} (1 \operatorname{Im} \lambda_f \sin(\Delta M t))$
- Then $a[f(t)] = -\text{Im}\lambda_f$, & λ_f is a function of V_{ij} in SM
- For B°, $\Delta\Gamma \approx 0$, but there can be multiple A_f

$$\Gamma(M \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\frac{1 - \left| \lambda_f \right|}{2} \cos(\Delta M t) - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$

If in addition $\Delta\Gamma \neq 0$, eg. B_s $\Gamma(M \rightarrow f) = N_f |A_f|^2 e^{-\Gamma t} \left(\frac{1 + |\lambda_f|^2}{2} \cosh \frac{\Delta\Gamma t}{2} + \frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) - \operatorname{Re} \lambda_f \sinh \frac{\Delta\Gamma t}{2} - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$

See Nierste arXiv:0904.1869 [hep-ph] Frontier Meeting Oct. 4, 2015

Transversity I

$$|A_{0}|^{2}(t) = |A_{0}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\parallel}(t)|^{2} = |A_{\parallel}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\perp}(t)|^{2} = |A_{\perp}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)\right],$$

$$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t}\left[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right)\right]$$

$$-\cos(\delta_{\perp} - \delta_{-} \|) \cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m t)],$$

$$\Re(A_{0}^{*}(t) A_{\parallel}(t)) = |A_{0}| |A_{\parallel}| e^{-\Gamma_{s} t} \cos(\delta_{\parallel} - \delta_{0}) [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right)]$$

 $+\sin\phi_s\sin(\Delta m t)],$

$$\Im(A_0^*(t)A_{\perp}(t)) = |A_0||A_{\perp}|e^{-\Gamma_s t}[-\cos(\delta_{\perp} - \delta_0)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_0)\cos\phi_s\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0)\cos(\Delta m t)],$$

$$|A_{\perp}(t)|^2 = |A_{\perp}|^2 e^{-\Gamma_s t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{\perp}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{\perp}\sin(\Delta m t) \quad \text{only term fo}$$

$$|A_{s}(t)|^{2} = |A_{s}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)\right], \quad \text{Only term for } f=f_{cp}$$
$$\Re(A_{s}^{*}(t)A_{\parallel}(t)) = |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}\left[-\sin(\delta_{\parallel}-\delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel}-\delta_{s})\cos\phi_{s}\sin(\Delta mt)\right]$$

$$+\cos(\delta_{\parallel} - \delta_{s})\cos(\Delta m t)],$$

$$(\Delta \Gamma)$$

$$\Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)],$$

$$C \Re(A_s^*(t)A_0(t)) = |A_s||A_0|e^{-\Gamma_s t} [-\sin(\delta_0 - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) -\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].$$

$$68$$

The Standard Model

CPAD Instrumentation Frontier Meeting Oct. 4, 2015

CUSE UNIT

VDED NO

Quark Mixing & CKM Matrix

 All 3 generations of -1/3 quarks (d, s, b) are mixed

Described by CKM matrix (also v are mixed)

$$V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Unitary 3x3 matrix can be described by 4 parameters λ =0.225, A=0.8, constraints on ρ & η
- These are fundamental constants of nature in the Standard Model

Effects on M_w from quantum loops

- FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops are changes in the W mass

 \square M_w changes due to m_H Gave predictions of m_μ prior to discovery

Β-→J/ψ Κ-

LHCb Event Display

□ 20 MHz of bunch crossing (in 2012, with 50 ns bunch spacing) with an average of 1.5 pp interactions per bunch crossing → this level of pileup not an issue for LHCb

Reasons for Physics Beyond the Standard Model

Dark Matter

Gravitational lensing

- Dark Energy: Cosmological constant
- Hierarchy Problem: Divergent quantum corrections to go from Electroweak scale ~100 GeV to Planck scale of Energy ~10¹⁹ GeV without "fine tuning" quantum corrections
- All of the above may only be related to Gravity

Other reasons for NP

- Flavor problem: Why 3 replications of quarks & leptons?
- Baryogenesis: The amount of CP Violation observed thus far in the quark sector is too small: (n_B-n_B)/n_γ =~10⁻²⁰ but ~6x10⁻¹⁰ is needed. Thus New Physics must exist to generate needed CP Violation
- To explain the values of CKM couplings, V_{ij}, (both neutrino & quark)
- To explain the masses of fundamental objects. Are they related to the V_{ii}'s?

Why these values? Are the two related? Are they related to masses?

LHCb detector ~ fully installed and commissioned \rightarrow walk through the detector using the example of a $B_s \rightarrow D_s K$ decay

B-Vertex Measurement

Momentum and Mass measurement

Hadron Identification

Calorimetry and L0 trigger

Muon identification and L0 trigger

