

Liquid Argon Neutrino Program Short- and Long-Baseline Neutrino Experiments

Zelimir Djurcic, Maury Goodman

ANL HEP-PHY Neutrino Meeting, April 13, 2015.

P5 Recommendations

- The Particle Physics Project Prioritization Panel (P5), a subpanel of the High Energy Physics Advisory Panel (HEPAP), has now completed its Report, a ten-year strategic plan for high energy physics in the U.S.
- P5 recommendations on neutrino program are all LBNE(F) related:

Recommendation 12: In collaboration with international partners, develop a coherent shortand **long-baseline neutrino program** hosted at Fermilab.

Recommendation 13: Form a new international collaboration to design and execute a highly capable Long-Baseline Neutrino Facility (LBNF) hosted by the U.S. To proceed, a project plan and identified resources must exist to meet the minimum requirements in the text. LBNF is the highest-priority large project in its timeframe.

Recommendation 14: Upgrade the Fermilab proton accelerator complex to produce higher intensity beams. R&D for the Proton Improvement Plan II (PIP-II) should proceed immediately, followed by construction, to **provide proton beams of >1 MW by the time of first operation of the new long-baseline neutrino facility**.

Recommendation 15: Select and perform in the short term a set of small-scale short-baseline experiments that can conclusively address experimental hints of physics beyond the three-neutrino paradigm. Some of **these experiments should use liquid argon to advance the technology and build the international community for LBNF at Fermilab**.

Deep Underground Neutrino Experiment (DUNE)

 Long-baseline neutrino experiment DUNE is proposed to consists of -an intense neutrino beam originating at Fermilab
 -near detector systems at Fermilab

-at least ~40 kt liquid argon time-projection chamber (TPC) at Sanford Laboratory

at 4850 foot depth – 1300 km from Fermilab

DUNE Science Goals

- LBNE is a comprehensive program to measure neutrino oscillation
- LBNE design follows these priorities:
 - -CP violation in neutrino sector
 - -CP phase measurement regardless of its value
 - -Neutrino mass hierarchy determination
 - -Determination of θ_{23} octant and precision parameter measurements

-Precision tests of 3-flavor neutrino model.

- -Atmospheric neutrino measurements (confirmation of mass ordering with independent data)
- -Nucleon decay
- -Supernova burst neutrinos
- -A very capable near detector will have a synergistic scientific program of precision neutrino and weak interaction physics.

Experimental Technique

- Produce a pure muon-neutrino beam with energy spectrum matched to oscillation pattern at selected distance.
- Measure spectrum of v_{μ} and v_{e} at a distant detector.

 v_{μ} spectrum

• LBNE is a good choice of beam and distance for sensitivity to CP-violation, CP-phase, neutrino mass hierarchy, Reconstructed Neutrino Energy (GeV) and other oscillation parameters within the same experiment.

Aiming for ~1000 events in neutrinos and ~300 in anti-neutrinos

• In v_e appearance search aiming at ~1000 events in neutrino run and ~300 events in antineutrino run.

Event Rates at the Far Detector

Mass Hierarchy and CP Sensitivities

-To get a sense of an expected exposure: for 40 kt FD and 1.2 MW beam it amounts to ~40-50 kt*MW per year.

Mass Hierarchy and CP Sensitivities

• Exposure: 245 kt.MW.yr = 34 kt x 1.2 MW x (3v+3v) years

8

DUNE Timescale

• Showed by Nigel Lockyer at ELBNF proto-colaboration meeting, January 22-23, 2015:

LBNF & ELBNF CONSTRUCTION/INSTALLATION STEPS

• Expect it to be flushed at DUNE Collaboration meeting later this week (April 16-18)

LBNE to DUNE Transition

- We actively participated in (former) LBNE Collaboration, with roles
 - -Deputy Spokesperson
 - -R&D Coordinator
 - -Data-base manager
 - -Development of photon-detector readout and calibration technique for LBNE LAr prototypes.
 - -Scientific/Analysis/Simulation Contributions.

- LBNE Retired in January. New DUNE Collaboration formed. Now looking for new roles. Initial roles:
 - -IB Chair role (Maury Goodman)
 - -Continue development of photon-detector readout and calibration technique -Data analysis from DUNE prototypes (35t detector, etc).
 - -...
- DUNE is a long-term project that is viewed as a major component of national HEP program in next > 10 years.

Short-Baseline Neutrino (SBN) Experiments

SBN Goals

• Testing Neutrino Anomalies with Multiple LAr TPC Detectors at Fermilab

MiniBooNE vµ → ve sterile neutrino search results

• SBN is a "triple" experiment at Fermilab Booster beamline

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

SBN Goals

• Short-baseline experiments and SBND

 Sensitivity of the SBN Program to vµ → ve oscillation signals (3+1 model).

• Sensitivity prediction for the SBN program to $\nu\mu \rightarrow \nu x$ oscillations

-Events from NuMI beamline will be observed as well

SBN Goals

- Short baseline program will be coordinated to serve as R&D platform for DUNE
 - -Automated event reconstruction
 - -Laser Calibration
 - -Photon detector R&D
 - -TPC readout
 - -Cold/warm electronics
 - -Cold feed-throughs/understanding of
 - HV breakdown
 - -Argon purification
 - -Cryogenic liquid processing
 - -...

SBND

• SBND may be viewed as a "neutrino test beam" experiment for DUNE.

SBND Event Rates

- Rich event sample for study of anomalies and cross-section models
 - -Estimated event rates using GENIE (v2.8) in the LAr1-ND active volume (112 t) for a 6.6×10^{20} proton-on-target exposure (~3 years) in Booster Neutrino Beam.

Process		No. Events	Events/ ton	Stat. Uncert.
	ν_{μ} Events (By Final State Topology)			
CC Inclusive	, , , , , , , , , , , , , , , , , , , ,	$5,\!212,\!690$	$46,\!542$	0.04%
$\rm CC~0~\pi$	$ u_\mu N o \mu + Np$	$3,\!551,\!830$	31,713	0.05%
	$\cdot ~~ u_\mu N ightarrow \mu + 0 p$	793,153	7,082	0.11%
	$\cdot \ u_{\mu}N ightarrow \mu + 1p$	2,027,830	18,106	0.07%
	$\cdot \ u_{\mu} N ightarrow \mu + 2p$	359,496	3,210	0.17%
	$\cdot u_{\mu} N ightarrow \mu + \geq 3p$	$371,\!347$	3,316	0.16%
$\rm CC~1~\pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	$1,\!161,\!610$	10,372	0.09%
$CC \ge 2\pi^{\pm}$	$ \nu_{\mu}N \to \mu + \text{nucleons} + \ge 2\pi^{\pm} $	$97,\!929$	874	0.32%
$CC \ge 1\pi^0$	$ u_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 1\pi^0 $	497,963	4,446	0.14%
NC Inclusive		1,988,110	17,751	0.07%
NC 0 π	$ u_{\mu}N ightarrow ext{nucleons}$	$1,\!371,\!070$	$12,\!242$	0.09%
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924	2,330	0.20%
$NC \ge 2\pi^{\pm}$	$ u_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	$31,\!940$	285	0.56%
$NC \ge 1\pi^0$	$ u_{\mu}N ightarrow ext{nucleons} + \geq 1\pi^0$	$358,\!443$	3,200	0.17%
	$ u_e Events$			
CC Inclusive		36798	329	0.52%
NC Inclusive		14351	128	0.83%
Total ν_{μ} and ν_{e} Events		7,251,948	64,750	
	ν_{μ} Events (By Physical Process	s)		
CC QE	$ u_\mu n o \mu^- p$	$3,\!122,\!600$	27,880	
CC RES	$ u_\mu N o \mu^- \pi N$	$1,\!450,\!410$	12,950	
CC DIS	$ u_{\mu}N ightarrow \mu^{-}X$	$542,\!516$	$4,\!844$	
CC Coherent	$ u_{\mu}Ar ightarrow \mu Ar + \pi$	18,881	169	

ANL Interest in SBND

- Use SBN to transition to DUNE (important component of national HEP prohram)
 -Provides opportunity for a Coherent science/technology program NOvA->SBN->DUNE. Complementary to JUNO.
- Opportunities for ANL participation
 - SBND (formerly known as LAr1 ND): possible contributions
 -Photo-detector Readout (leverage off existing design for 35t prototype)
 -RPC as cosmic veto,
 - -Leading to optimization of photodetection in ELBNF
 - -Neutrino-theory collaboration with PHY on neutrino-Ar cross section.
 - -Expertise from participation in MiniBooNE (simulation, data analysis, sterile neutrino searches).

-Potential use of ANL HPC (High-Performance Computing).

- DUNE
 - -Computing (database-ATLAS expertise, HPC-ATLAS and Cosmology)
 - -Readout Electronics and Photo-detectors (LAPPD and alternatives).

-Calibration techniques

-Neutrino cross-section working group (PHY Theory)

Status: Joined SBND. Participating in ELBNF formation.

Photon-detector Electronics

- Design and deployment of the front-end electronics (SSP modules)) and calibration system for the photon detector system.
 - -These components are being actively developed with our electronics group for tests to be performed with the LBNE 35-ton prototype detector at Fermilab in 2015.
 - -The 35-ton photon detector system was developed in a collaboration with university groups where ANL is responsible for the readout electronics.
 - -We will use experience gained from these tests as a starting point for future development (SBND, DUNE).

Photon-detector Electronics

-Photon detector in SBND should trigger on every cosmic ray muon and neutrino interaction

The readout electronics for the photon detector at LAr1-ND is expected to be capable of observing light pulses at a single photo-electron level which should enable a separation of prompt from delayed components of scintillation light. (pulse-shape discrimination).
The photon system system should have a high time resolution (~1 ns) to explore correlation between beam spills (Booster RF structure) and events observed in the detector.
Interest tied to other efforts at ANL such as development of novel fast photo-sensors ("LAPPD" development) that may have future applications in cryogenic detectors.

Photon-detector Calibration

UV light calibration system: transport light from UV LEDs through quartz fiber to the TPC volume; diffuse light to the photon detection system and mimics physics.
 -monitor stability, uniformity and time resolution of the system

• Other calibration techniques need development -Deploying a radioactive source to the TPC

-Accelerator option (think of it in a connection to JUNO accelerator?)

Physics Contribution

• We have extensive neutrino experience, including work with Soudan 2, MINOS, MiniBooNE, NOvA, Double Chooz and LBNE.

-We plan to be active in a simulation, reconstruction, and data analysis.

-We would plan to significantly contribute to analysis of the Booster beam neutrinos, but also to bring in the knowledge and expertise with NuMI beamline.

- -With respect to the sterile neutrino searches we were actively involved in MiniBooNE experiment where he had important roles in the oscillation analysis of Booster beam neutrinos and a leading role in an analysis of NuMI beam neutrinos observed with the MiniBooNE detector.
- -We have worked on the issue of cosmic ray background on NOvA and LBNE, and are interested in specifying the LAr1-ND sensitivity to new physics other than sterile neutrinos.
- -Theory Initiative. We may discuss a potential ANL HEP and ANL PHYSICS experimental theory collaboration that could enhance the SBN program. There may be a strong interest within PHYSIS in the nuclear structure physics and electroweak interactions that are relevant to aspects of neutrino-nucleus scattering.

Other Opportunities

- There could be other opportunities to support the LAr1-ND and the SBN program
 Other electronics contributions are possible as well, given a very high level of technical expertise within our electronics group.
 - -We would explore possibilities to construct other experimental components and the equipment with involvement of our mechanical support group (recently built components of ATLAS, NOvA, CTA, etc).
 - -We are discussing a use of ANL RPC detection system for the muon tagging.
 - => recently presented to the collaboration; strong interest expressed.
 - -We are looking into detector development including the possible use of nanoparticle coatings on phototubes to enhance response, by replacing TPB wavelength-shifter (contacts with ANL CNM, and external contacts).
 - -We will consider use of the high-performance computing (HPC) resources at ANL on the software and computing side. These resources (700,000 CPUs available) are suitable for event generation and simulation. Could try it with a photon-detector simulation.

