

Bolometric Measurement of Neutrinoless Double Beta Decay

Clarence Chang, Gensheng Wang, Volodymyr Yefremenko HEP Division

> Junjia Ding, Valentyn Novosad MSD

Argonne National Laboratory

Outline

- A brief introduction to COURE Cryogenic Underground Observatory for Rare Events
- Event by event based background discrimination with simultaneous measurements of heat and light - a roadmap to exploring the neutrino mass hierarchy
- Transition Edge Sensor (TES) R&D at ANL for both heat and light measurements
- Summary

COURE — An Experimental Searching for Neutrinoless Double Beta Decay (OvDBD)

- Two simultaneous electrons with summed kinetic energy $Q_{\beta\beta} \sim 2.527$ Mev. Measuring event rate at the expected energy.
- In inverted hierarchy, Majorana neutrino mass >= 10 meV.

Bolometric Measurement

- 5cm by 5cm by 5cm (750g) TeO₂ Crystals
- Cooled to ~10 mK inside a dilution refrigerator cooled cryostat
- Such a small heat capacity (C proportional to T³) that the released energy in OvDBD produces a measurable rise in temperature

~20 µK / MeV

Experimental Event Rate of OvDBD

The measured OvDBD half-life corresponds to the maximum signal that could be detected in a experiment

$$1 / \mathbf{T}_{1/2}^{0\nu} \propto \frac{a \cdot \eta \cdot \varepsilon}{A} \cdot \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

- a : isotopic abundance
- η : stoichiometric coefficient
- ε : detector efficiency
- A : molecular weight of the active mass
- M : detector mass [kg]
- T : measurement live time [y]
- B : background [c/keV/kg/y]
- ΔE : energy resolution [keV]

Normalized Background Spectrum

- ⁶⁰Co from cosmogenic activation: ~small amount
- Compton edge from ²⁰⁸Tl (daughter of ²²⁸Th): ~40%
- Alphas from crystal surfaces (²³²Th and ²³⁸U): ~10%
- Alphas from Cu holders surfaces (²³²Th and ²³⁸U): ~50%

CUORE Results

- CUORE-0
 - ΔE=5.1 keV, B=0.058 counts/keV·kg·year, 10 kg·year of total Te low background data, T_{1/2}^{0v} > 2.7·10²⁴ yr
 - CUORICINO and CUORE-0, $T_{1/2}^{Ov}$ > 4.0.10²⁴ yr
- CUORE
 - Introducing pulse shape discrimination parameters and with improved materials handling
 - B=0.010 counts/keV · kg · year
 - 988 TeO₂ crystals in 5 years, $T_{1/2}^{0v} \sim 6.10^{25}$ yr
- CUPID (Cuore Upgrade with Particle IDentification)
 - An interest group working on a new generation large scale bolometric OvDBD experiment beyond CUORE

CUPID - A way to lead

- Other neutrinoless double beta decay experiments
 - GERDA (⁷⁶Ge), 2013, T_{1/2}^{0v} > 3.10²⁵ yr
 - EXO (¹³⁶Xe), 2014, $T_{1/2}^{0v} > 1.1 \cdot 10^{25} \text{ yr}$
 - Future scalable experiments: nEXO (¹³⁶Xe) and SNOplus (¹³⁰Te)
- To scale bolometric experiment up
 - Enriched isotopes (130Te, 82Se, 116Cd and 100Mo)
 - Large number of bolometric detectors with multiplexing capability (using superconducting electronics)
- Near-zero background experiment
 - ROI above ²⁰⁸Tl gamma line (⁸²Se, ¹¹⁶Cd and ¹⁰⁰Mo)
 - Event by event background discrimination with simultaneous measurements of heat and light.
 - $\Delta E=2.0$ keV energy resolution by using TES
 - B=0.0001 counts/keV · kg · year
- Science goal of $T_{1/2}^{0v} \sim 10^{28}$ y & m_v ~ 10 meV

Measuring both Heat and Light

9

Surface event rejection - light yield

Light Detector with Internal Gain

- 500 µm crystalline silicon
- Al superconducting electrodes
- Photons create ionization charges
- Electric charges are converted to heat under high voltage (Neganov-Luke effect)
- TES thermometer measures temperature change due to the primary photons and the Neganov-Luke phonons

$$G = 1 + \frac{e \cdot V_{NL}}{E_g / \eta}$$

M. Willers et. al., JINST 10 (2015) P03003

Measuring both Heat and Light with TESs

- Heat capacitance < 100nJ/K, 50μ K@2.6MeV, expected thermodynamic Δ E=0.3 keV, measured with NTD Δ E=5.1 keV
- Using TES and improving thermal coupling, $\Delta E<2$ keV

Low-Tc Transition Edge Sensor (TES) at Argonne

- Low-Tc (below 30 mK) TES using proximity effect
- Ir/Au (or Ir/Pt) bilayer TESs were fabricated at Argonne
- Tested at Berkeley using a dilution refrigerator with a base temperature of ~ 8 mK

100 nm Ir/xxx nm Au bilayer

Channel	ANL	Film	Au	Ir Aneal	R(1K)	T_c
	Sample		(nm)	(° C)	$(m\Omega)$	(mK)
1	12	lr/Au	261	500	47.6	21-23
2	15	lr/Au	106	500	153	78
3	17	lr/Au	174	-	81	65
4	19	lr/Pt	20	500	1000	93
6	16	lr/Au	261	-	?	?
10	15	lr/Au	106	500	99	77
12	12	lr/Au	261	500	35	32
13	12	Ir/Au	261	500	33	26-27
14	12	lr/Au	261	500	25.2	23-25

Ir was sputtering deposited at 500 °C on silicon wafer. Au was sputtering deposited after the wafer cooled to room temperature.

Ir/Pt bilayer

Room temperature sputtering deposition. 80 nm Ir. Change Pt thickness.

80 nm Ir / 20 nm Pt . Change wafer temperature during Ir sputtering deposition.

Low-Tc TES at Argonne

Low-Tc TES for OvDBD search at Argonne

Summary

- CUORE is a OvDBD search experiment using sensitive bolometric technique
- CUPID will be the successor of CUORE with enriched isotopes and TESs (which can be multiplexed)
- ANL contributes a new generation OvDBD search technology by collaborating with Berkeley group
 - Low-Tc TESs for both heat and light measurements
- Background reduction
 - Using Neganov-Luke effect to increase the signal to noise ratio for Cherenkov light detection in case of TeO_2 reducing B
 - Taking advantage of the scintillation light and using isotopes with larger $Q_{\beta\beta}$ values of ZnSe, ZnMoO₄, CdWO₄, but at a higher cost
 - Exploring techniques to improve the thermal coupling between a target crystal and a TES thermometer reducing ΔE

COURE Experiment

- 19 towers, 13 floors each tower, 4 750g TeO₂ crystals each floor
- Cooled down to 10 mK with a dilution refrigerator in a shielded cryostat in LNGS

Expected Event Rate of OvDBD

19

Techniques to a bolometric OvDBD experiment

Low-Tc TES at Argonne

20

Background vs ROI

Isotopes for OvDBD

Isotope	$Q_{\beta\beta}$ (keV)	I.A.(%)	$G^{0\nu}$	$H^{0\nu}$
^{48}Ca	4272	0.187	24.81	826.2
76 Ge	2039	7.8	2.36	49.6
^{82}Se	2995	8.73	10.16	198.1
⁹⁶ Zr	3350	2.8	20.58	342.7
^{100}Mo	3034	9.63	15.92	254.5
¹¹⁰ Pd	2018	11.72	4.82	70.0
^{116}Cd	2814	7.49	16.70	230.1
^{124}Sn	2287	5.79	9.04	116.5
^{128}Te	866	31.69	0.59	7.4
$^{130}\mathrm{Te}$	2527	33.8	14.22	174.8
136 Xe	2458	8.9	14.58	171.4
$^{148}\mathrm{Nd}$	1929	5.76	10.10	109.1
$^{150}\mathrm{Nd}$	3371	5.64	63.03	671.7
^{154}Sm	1215	22.7	3.02	31.3
$^{160}\mathrm{Gd}$	1730	21.86	9.56	95.5
¹⁹⁸ Pt	1047	7.2	7.56	61.0