

Survey Simulations

Kyle Dawson (University of Utah)

K.S. Dawson, November 2, 2015

Observing Overview

- Long-term Strategy
 - What is the order that we should observe the sky?
- Afternoon Planning
 - Design observations (LST, hour angle) for uniform coverage
 - Prioritize fields for night's observing
- Field Selector
 - Automated, real-time choice of observation field
- Exposures
 - Determine open-shutter time with real-time prediction of S/N from guider data
 - Immediate evaluation of spectral data (quicklook)
- Simulations produce randomized weather patterns and perform simulated sequence of afternoon planning, field selection, and exposures for each night

Long Term Strategy

- Strategy to complete 14k baseline program
- Dark Time: Define sequence of observations
 - Observe complete 1400 sq deg area in two years for immediate clustering measurements
 - Observe LRG/QSO at highest priority for rest of footprint
 - Observe ELG after LRG/QSO are nearly completed
- Grey Time: Increase efficiency and observe ELG targets
 - ELG targets have features preferentially at red wavelengths, less susceptible to moon illumination
- Bright Time: observe bright, low redshift galaxies
- Poor Conditions: observe very bright stellar fields

Afternoon Planning

- Four modules
- Assign completion status to all fields
 - Link to full reductions for completion status
- Find optimal design of all incomplete fields
 - Field centers (RA,DEC) for each field
 - Estimate of Galactic extinction
 - Determine Hour angles for each field
- Identify fields for the night
 - Are fiber assignments complete?
 - Moon avoidance, moon illumination
 - Moonrise, moonset
 - Sunrise, Sunset
- Use long-term term strategy and contiguity arguments to prioritize fields for each timeslot during the night

Field Selector

- Final module used by online system
- Simulate online system control of next-field selector
 - Trigger next exposure request upon field completion
 - Choose next field based on LST and current conditions
- Needs record of field information from fiber assignment
 - Field centers (RA,DEC) for each field
 - Wavelength to optimize for each target
 - Estimate of Galactic extinction
 - Guide star positions and magnitudes
- Needs record of observing strategy from afternoon planning
 - Field prioritizations
 - Hour angles, predicted exposure time, and beginning LST
 - Conditional status of each field (dark, grey, bright, or poor)
- Needs record of template target classes for each field
 - For exposure time calculations

K.S. Dawson, November 2, 2015

Exposures

- Three modules
- Simulate guide camera
 - What is estimate of seeing, transparency, sky brightness?
 - Add noise to estimates to assess tolerance requirements
- Simulate exposure time calculator
 - Estimate exposure time for current field
 - Use guide camera information
 - Use template classes to determine integration depth
- Exposure data
 - Document true observing conditions
 - Document exposure times and properties
 - Simulate all metadata as required by pipeline group

Simulations

- Three modules
- Monte carlo weather over five year program
 - Reproduce RMS, median conditions for each month as recorded in KPNO history
- Wrapper on daily procedures
 - Run afternoon planning
 - Produce weather conditions for night
- Wrapper on observing sequence
 - Repeat field selection, exposure sequence from dawn till dusk

