



#### Introduction to QuickCat

R. Kehoe (SMU)

- Large scale structure catalogs
  - Require effective rendition of
    - DESI detector performance
    - observation quality
  - Fits into catalog processing at point that objects have been determined to have been observed
    - Targetting and fiber assignment decisions made
    - Need to operate on the input from this simulation to produce a 'final' catalog
- Need a way to ensure
  - Provide 'measured' redshifts, efficiencies and classifications as in DESI data survey





### Requirements

- Take a set of sources with properties {x}
  - Measure them with properties  $\{x'\}$  at some efficiency
- Developing list of dependencies
  - Three areas to consider
  - Detector performance
    - Eg. Flux, wavelength sensitivity, resolution
  - Observational conditions
    - Eg. Sky brightness, focus, seeing,
  - Algorithmic effects
    - Eg. Cosmic removal, sky subtraction artifacts
  - Taken into measurements of  $\{x'\}$  and efficiency





# 0<sup>th</sup> Order Goal of Workshop

Establish role of QuickCat in creation of LSS catalogs

- Determine
  - catalog inputs and interfaces
  - QuickCat output content, format
- Take output redshift = input redshift





#### **Next Step**

- Redshift accuracy for detected tracers
  - ELGs, LRGs, QSOs, BGs
  - Dependency on redshift
  - Also a dependency on flux
  - ELGs affected differently than Ly $\alpha$  vs. wavelength
- We can examine redshift fitted spectra with actual values
  - Eg. RedMonster outputs
  - Can examine redshift success, and accuracy for each tracer type
  - RedMonster-ready inputs prepared for each type





#### **Further Work**

- Substantial simulation work
  - Of all tracers, and stars
  - Study classification, efficiency and redshift accuracy
    - Need to be able to 'confuse' inputs as other categories, for instance
- Need significant simulations of various tracer types
  - QuickGen (encapsulates QuickSim) to simulate observed spectra
  - Need redshift fitting
  - Once have this, can run many spectra thru to related input redshift (i.e. {x0}) to output redshift {x'0}





## Workshop Plans

- Focus on 0<sup>th</sup> order goal
  - Sole focus of 1<sup>st</sup> day sessions
- Will have presentation/tutorial on
  - redshift fitting,
  - Spectroscopic simulation
  - Input welcome
    - Clustering, BGS involvement
    - Spectrscopy side, and data pipeline
- Primary goal: implementation of initial tool
  - Parametrization of input {x} vs {x'}
- Also establish set of requirements for
  - QuickCat inputs and outputs
  - Studies for QuickCat parametrization