Standard Model Measurements at the LHC

João Guimarães da Costa Harvard University

US ATLAS Workshop - Argonne

July 15, 2013

Why Standard Model Physics? ...in the era of the Higgs Boson

Search for deviations from SM

- Many new physics models rev from NLO or NNLO QCD
 - Example: contact interaction
- Establish:
 - Understanding of background
 - E.g.: Drell-yan is a major bac
 - Improved proton PDFs
- Explore the SM self consiste
 - Measure its parameters

Now that the Higgs was found, measuring the top and W mass precise enough will be an enduring challenge

How we do it?

Probes

Jets inclusive dijets multijets jet sub-structure HF production

Photons

inclusive diphotons γ + jets γ + HF Physics non-perturbative QCD

NLO QCD

NNLO QCD

Proton PDF

Valence, strange quarks Gluons

Electroweak parameters

Probes

W/Z Bosons inclusive V+jets Ratio W/Z + jets W and Z + HF

Top quark

Dibosons WW, WZ, ZZ, Wy, Zy

Hadrons

Combine analyses, e.g. to obtain the most information about PDFs

How we do it?

Probes

Jets inclusive dijets multijets jet sub-structure HF production

> Photons inclusive diphotons γ + jets γ + HF

Physics non-perturbative QCD

NLO QCD

NNLO QCD

Proton PDF

Valence, strange quarks Gluons

Electroweak parameters

Probes

W/Z Bosons inclusive V+jets Ratio W/Z + jets W and Z + HF

Top quark

Dibosons WW, WZ, ZZ, Wγ, Zγ

Hadrons

Combine analyses, e.g. to obtain the most information about PDFs

Many topics left out:

SM Higgs production Heavy-flavour physics (B-physics) Heavy-ion physics (physics in dense media)

Inclusive Jet Cross Sections

CMS-PAS-SMP-12-01

NLOJET++ prediction with NNPDF 2.1

NLO QCD predictions describe data over 10 orders of magnitude!

Jet inclusive data starts to constrain gluon PDFs (CT10, MSTW2008, NNPDF2.1, HERAPDF1.5, ABM11)

Inclusive cross section ratio 2.76 TeV/7 TeV

 Experimental uncertainties is reduced and generally smaller than theory uncertainty (JES ~ few %)

arXiv:1304.4739

Impact on gluon and sea parton distribution functions

Inclusive cross section ratio 2.76 TeV/7 TeV

 Experimental uncertainties is reduced and generally smaller than theory uncertainty (JES ~ few %)

arXiv:1304.4739

Impact on gluon and sea parton distribution functions

Inclusive cross section ratio 2.76 TeV/7 TeV

 Experimental uncertainties is reduced and generally smaller than theory uncertainty (JES ~ few %)

arXiv:1304.4739

8

Impact on gluon and sea-quarks distribution functions

Extraction of the Strong Coupling Constant

Ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section (R₃₂)

ATLAS: Preliminary result with similar measurement (ATLAS-CONF-2013-041) CMS: Measurement in top events (CMS-PAS-TOP-12-022)

Photon cross section measurements

 $\gamma + 1$ jet

rapidity distribution

JHEP 01 (2013) 086

Photon cross section measurements

NLO and NNLO essential to describe data

US ATLAS Workshop Argonne Jul 2013 Joao Guimaraes 11

W and Z inclusive production

Strangeness in the Proton (from W and Z data)

Phys.Rev.Lett. 109 (2012) 012001

Fit results:

- Light quark sea at low x is flavor symmetric (x ~0.023, $Q^2 = 1.9 \text{ GeV}^2$)
- Enhancement of strangeness by 50% (2σ)
- Total sea enhancement of 8%

Measurement of the ϕ_{η}^* distribution of Z/ γ^*

arXiv:1211.6899

 ϕ_{η}^{*} is a measure of scattering angle of leptons relative to beam in Z/ γ^{*} rest frame

 ϕ_{η}^{*} is correlated to $p_{T}(Z)$ and probes same physics

φ_η* depends on lepton angles only,
more precisely measured than
momenta

High-mass Drell-Yan production

Exclusive / semi-exclusive I⁺I⁻ production

Main signature: Only two tracks within fiducial region of detector

 $\sigma(pp \rightarrow p\mu^+\mu^-p) = 3.38^{+0.58}_{-0.55} \text{ (stat.)} \pm 0.16 \text{ (syst.)} \pm 0.14 \text{ (lumi.) } \text{ pb}$

Data/prediction = 0.83

Explore extreme phase space (using large dataset at 7 TeV)

> Large jet multiplicities

Large p⊤(jet), large H_T

Renormalization, factorization scale uncertainty:

- Naive approach (1/2, x2)
- Stewart/Tackmann

Hard Double Parton Interactions (in W+2 jets events)

- Irreducible background for SM and New Physics searches
 - How well is this modeled by our MC generators?
 - Example: 25% of Wb cross section

cross section for the double parton interaction (DPI) of a combined Y + Z system

 σ_{eff}

$$\sigma_{Y+Z}^{(\text{DPI})} = \frac{\sigma_Y \cdot \sigma_Z}{\sigma_{\text{eff}}}$$

 $\sigma_{eff} \sim proton area$

 $\frac{\sigma_{W_{0j}} \cdot \sigma_{2j}}{\sigma_{W_{0j}+2j_{DPI}}}$

W + Heavy Flavor (HF) production

Combined Wb + single top cross section also done

lul 2013 Joao Guimaraes

പ

AS Workshop

Argonne

CMS-PAS-SMP-12-002

CONF-2013-045

140

(similar to earlier result on W/Z differential cross section)

Top production at 7 and 8 TeV

Top pair production

Consistent across all channels (Experimental uncertainty: ~ 5-15%)

Approx. NNLO and full NNLO QCD prediction (Similar theoretical precision)

Start constraining gluon PDFs!

Single top production

New measurements of t-channel production at 8 TeV (Uncertainty: ~ 13-19%)

ATLAS-CONF-2012-132 CMS-PAS-TOP-12-011

Ratio of top vs anti-top

ATLAS-CONF-2012-056 CMS-PAS-TOP-12-038

Probing the top quark: differential cross sections

Many kinematic properties of top events have been measured

Differential ttbar cross sections CMS-PAS-TOP-12-028

Jet multiplicity in ttbar events ATLAS-CONF-2012-155

Events

MC/Data

es

Generally, good agreement with MC and/or approximate NNLO predictions

Top quark mass measurements

Measured in different channels with different techniques

Best measurements are in the lepton+jets channel

Only 7 TeV data used so far

Non-"stat-like" systematics

Dominant systematics:

CMS: arXiv:1209.2319

- b-jet energy scale
- Color reconnection
- Total "non-stat" syst.: 0.98 GeV

ATLAS: ATLAS-CONF-2013-046

- Overall jet energy scale
- b-tagging efficiency and mistag
- Total "non-stat" syst.: 1.35 GeV

LHC combination effort on-going: expect 0.5-0.7 GeV

Diboson production at the LHC

Diboson production cross sections

Diboson differential cross sections

Unfolded distribution

Raw distribution

 $W\gamma$, $Z\gamma$, WW, WZ or ZZ

S

AS

Jul 2013

Triple gauge couplings

Feb 2013										
Chargeo	d couplings		ATLAS Limits CMS Limits D0 Limit LEP Limit	-[][∮]						
Δr –		— Wγ	-0.410 - 0.460	4.6 fb ⁻¹						
		Wγ	-0.380 - 0.290	5.0 fb ⁻¹						
	H	ww	-0.210 - 0.220	4.9 fb ⁻¹						
	H	WV	-0.110 - 0.140	5.0 fb ⁻¹						
	\mapsto	D0 Combination	-0.158 - 0.255	8.6 fb ⁻¹						
	⊢ ●	LEP Combination	-0.099 - 0.066	0.7 fb ⁻¹						
2	\vdash	Wγ	-0.065 - 0.061	4.6 fb ⁻¹						
λγ	H	Wγ	-0.050 - 0.037	5.0 fb ⁻¹						
	H	ww	-0.048 - 0.048	4.9 fb ⁻¹						
	н	WV	-0.038 - 0.030	5.0 fb ⁻¹						
	юн	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹						
	HeH	LEP Combination	-0.059 - 0.017	0.7 fb ⁻¹						
-0.5	0	0.5 1	1.5							
	aTGC Limits @95% C.L.									

- Charged couplings:
 - LHC limits similar to LEP limits

Neutral couplings:

 LHC limits already far stricter than LEP limits

New frontiers in SM physics at LHC

Single Z electroweak production

Similar to VBF Higgs production

- First evidence for electroweak Z production
 - Uses BDT to separate signal form enormous QCD Z+2 jets background
 - Statistically limited measurement consistent with SM expectations

S

ATLAS Workshop

Argonne

lul 2013

oao

Exclusive production of WW ($\gamma\gamma \rightarrow$ WW)

Set limits on aQGC using events with $P_T(\mu e) > 100 \text{ GeV}$

> Limit results: x20 Tevatron x100 LEP

US ATLAS Workshop Argonne -Jul 2013 -Joao Guimaraes

Conclusions

We have re-established the Standard Model at the LHC

- Besides finding the last missing piece of the SM...
- Found impressive agreement with theory across orders of magnitude
 - Continuing to explore ever smaller cross sections
- Established a stable ground for new physics searches
 - Still, deeper understanding is needed:

Vector Boson Fusion

- Parton distribution function
- NNLO QCD calculations and NLO EWK corrections

- Many more results to come in the next few months
 - We are just starting SM physics with the 8 TeV data
- Later:

Vector Boson Scattering

Top pair production cross section at 7 and 8 TeV

Comparisons with new theoretical predictions

SD ATLAS Workshop Argonne Jul 2013 Joao Guimaraes

Inclusive Jet and Dijet Cross Sections at 7 TeV

Phys.Rev. D86 (2012) 014022

 $L = 37 \text{ pb}^{-1}$

Inclusive jet cross section

Dijet cross section

NLOJET++ prediction with CT10

Testing predictions over 9 orders of magnitude!

37

Inclusive jet cross section at 2.76 TeV

Uncertainties on 2.76TeV jet cross section

(b) $2.1 \le |y| < 2.8$

Uncertainties on the ratio 2.76 TeV to 7 TeV jet cross sections

(a) |y| < 0.3

Anomalous triple gauge couplings

Limits on 5 anomalous charged couplings accessible in Wγ, WW and WZ channels

Feb 201	3				Fe	b 2013					
			ATLAS Limits CMS Limits D0 Limit LEP Limit	- 1 1 2					ATLAS Limits CMS Limits D0 Limit LEP Limit		
A	H	+ Wγ	-0.410 - 0.460	4.6 fb ⁻¹		Δκ-	Н	ww	-0.043 - 0.043	4.6 fb ⁻¹	
$\Delta \kappa_{\gamma}$		Wy	-0.380 - 0.290	5.0 fb ⁻¹		- • Z	н	WV	-0.043 - 0.033	5.0 fb ⁻¹	
			0.000 0.200	4.0.6-1			H	LEP Combination	-0.074 - 0.051	0.7 fb ⁻¹	
		VVVV	-0.210 - 0.220	4.9 ID		λ	H	ww	-0.062 - 0.059	4.6 fb ⁻¹	
	H	WV	-0.110 - 0.140	5.0 fb ⁻¹	• I '	Z	H	WW	-0.048 - 0.048	4.9 fb ⁻¹	
	⊢→	D0 Combination	-0.158 - 0.255	8.6 fb ⁻¹			ш	WZ	-0.046 - 0.047	4.6 fb ⁻¹	
	H•	LEP Combination	-0.099 - 0.066	0.7 fb ⁻¹			H	WV	-0.038 - 0.030	5.0 fb ⁻¹	
2	H	Wγ	-0.065 - 0.061	4.6 fb ⁻¹			ю	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹	
ıλγ	щ	Ŵv	-0.050 - 0.037	5.0 fb ⁻¹			H+H	LEP Combination	-0.059 - 0.017	0.7 fb ⁻¹	
		1404	-0.048 - 0.048	4.0 fb ⁻¹		۸o ^Z	H	WW	-0.039 - 0.052	4.6 fb ⁻¹	
		****	-0.040 - 0.040	4.910	1 1	-9 ₁	H	ww	-0.095 - 0.095	4.9 fb ⁻¹	
	H	WV	-0.038 - 0.030	5.0 fb ⁻¹			\mapsto	WZ	-0.057 - 0.093	4.6 fb ⁻¹	
	юн	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹			юн	D0 Combination	-0.034 - 0.084	8.6 fb ⁻¹	
	Hert	LEP Combination	-0.059 - 0.017	0.7 fb ⁻¹			Hel	LEP Combination	-0.054 - 0.021	0.7 fb ⁻¹	
-0.	.5 0 0	0.5 1	1.5			-0.5	0	0.5 1	1.5		
		aTGC L	imits @959		aTGC Limits @95% C.L.						

Stronger limits:

- CMS WW/WZ → Ivjj uses fit to p_T(dijet) distribution
- No deviations from the SM have been been observed
 - LHC limits already at the level of LEP limits

Fiducial differential cross sections

ATL AS Workshop Argonne Jul 2013 Joao Guimaraes

40

S

Fiducial differential cross sections

Triple Gauge Couplings (WWZ and WWy)

The effective Lagrangian for model-independent charged triple gauge couplings can be expressed as:

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i \left[g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu\nu} W^{\dagger\mu} V^{\nu}) + \kappa^V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} \right]$$

 $V = Z \text{ or } \gamma$, $g_{WW\gamma} = -e$, and $g_{WWZ} = -e \cot(\theta_W)$

In the Standard Model: $(g_1^V, k_V, \lambda^V) = (1, 1, 0)_{SM}$

Set limits on:

$$\Delta g_1^{\vee} = g_1^{\vee} - 1, \ \Delta k^{\vee} = k_{\vee} - 1, \ \lambda^{\vee}$$

Introduce arbitrary cut-off scale Λ to enforce unitarity

$$lpha(\hat{s}) = rac{lpha_0}{(1+\hat{s}/\Lambda^2)^2}$$

Cross section with aTGCs has strong energy dependence k_Z proportional to √ŝ; g₁^Z and λ^Z ~ ŝ
→ measure differential cross-section sensitive to √ŝ

Anomalous TGC effe

10⁻² =

10⁻³

Events / bin

160

140

120

100

80

60

40

20

0

0-30

 $Ldt = 4.6 \text{ fb}^{-1}$

30-60

30-60

ATLAS Preliminary

(1/σ) dσ/dm(WZ)

16

14

120

100

80

60

40

20

0

0-30

Events / bin

-0.3

-0.2

-0.1

(using $P_T(Z)$ distribution)

1 0.2 0.3 0.4 α [anomalous coupling]

0.1

Triple Gauge Couplings (WWZ and WWy)

(from $P_T(\gamma)$ distribution)

neutral Triple Gauge Couplings (ZZZ and ZZy) Possible vertices using an effective Lagragian $\mathcal{L}_{VZZ} = -\frac{e}{M_{\tau}^{2}} \left[f_{4}^{V} (\partial_{\mu} V^{\mu\beta}) Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + f_{5}^{V} (\partial^{\sigma} V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} \right]$ Scale dependent form-factors **CP-violating CP-conserving US ATLAS Workshop** with cutoff scale Λ f_5^Z $ZZZ, ZZ\gamma$ ATLAS Argonne $(f_4^Z, f_4^\gamma, f_5^Z, f_5^\gamma) = (0, 0, 0, 0)_{SM}$ f_5^{γ} CMS, Vs = 7TeV 5.0 fb⁻¹, $\Lambda = \infty$ ATLAS, s = 7TeV Jul 2013 4.6 fb⁻¹, Λ = ∞ ATLAS. Is = 7TeV f₄ 4.6 fb⁻¹, Λ = 3 TeV LEP. vs = 130-209 GeV 0.7 fb⁻¹. $\Lambda = \infty$ ■ D0, √s = 1.96TeV Joao Guimaraes 1.0 fb⁻¹, Λ = 1.2 TeV f^{γ}_{Δ} 0.2 0.4 -0.8-0.6 -0.2 -0.40 (using $P_T(Z)$ distribution)

Three years at the Energy Frontier

Remarkable LHC operation..

2010 0.05 fb⁻¹ at 7 TeV

O(2) pile-up events 150 ns bunch spacing

Designed pile-up value (expected at L=10³⁴)

Three years at the Energy Frontier

Remarkable LHC operation..

2011 5.6 fb⁻¹ at 7 TeV 2010 0.05 fb⁻¹ at 7 TeV

O(10) pile-up events 50 ns bunch spacing

O(2) pile-up events 150 ns bunch spacing

Designed pile-up value (expected at L=10³⁴)

Three years at the Energy Frontier

Remarkable LHC operation..

2012 23 fb⁻¹ at 8 TeV 2011 5.6 fb⁻¹ at 7 TeV 2010 0.05 fb⁻¹ at 7 TeV

O(20) pile-up events 50 ns bunch spacing

O(10) pile-up events 50 ns bunch spacing

O(2) pile-up events 150 ns bunch spacing

Designed pile-up value (expected at L=10³⁴)

Re-establishing the SM at LHC

Z inclusive cross section

Phys. Rev. D85 (2012) 072004

W inclusive cross section

Phys. Rev. D85 (2012) 072004

rom SM WW to H --> WW

(note: 7 TeV Higgs analysis for proper comparison)

Higgs contribution: 3%

Further kinematic cuts

Symmary of diboson cross section measurements

SD

Anomalous triple gauge couplings

Limits on 8 anomalous neutral couplings accessible in Zγ and ZZ channels

Feb 2013							Feb 2013							
			A C C	TLAS Limits MS Limits DF Limit		_				. .		ATLAS Lin CMS Limit	nits Is	Ī
h_3^{γ}	—	Zγ	-().015 - 0.016	6 4.6 fb ⁻¹		۰Ÿ	F		ZZ		-0.015 -	0.015	4.6 fb ⁻¹
		Ζγ Ζγ	-().003 - 0.003).022 - 0.020) 5.1 fb ⁻¹		t ₄	F		ZZ		-0.013 -	0.015	5.0 fb ⁻¹
hZ	H	Zγ	-(0.013 - 0.014	4.6 fb ⁻¹		٤Z	⊢		ZZ		-0.013 -	0.013	4.6 fb ⁻¹
n ₃	н	Zγ	-(0.003 - 0.003	3 5.0 fb ⁻¹	-	4	F		ZZ		-0.011 -	0.012	5.0 fb ⁻¹
		Zγ	-(0.020 - 0.021	5.1 fb ⁻¹		۰ ^γ			ZZ		-0.016 -	0.015	4.6 fb ⁻¹
h ₄ ^γ x100	\vdash	Zγ	-(0.009 - 0.009	4.6 fb ⁻¹	r -	f' ₅	-		zz		-0.014 -	0.014	5.0 fb ⁻¹
	н	Zγ	-(0.001 - 0.001	5.0 fb ⁻¹							0.040	0.040	1001
h ₄ ^z x100	⊢ − − 1	Zγ	-(0.009 - 0.009	4.6 fb ⁻¹		fZ	H		ZZ		-0.013 -	0.013	4.6 fb ⁻⁺
	н	Zγ	-(0.001 - 0.001	5.0 fb ⁻¹		5	H		ZZ		-0.012 -	0.012	5.0 fb ⁻¹
-0.5	0	0.5	1	1.5	x10 ⁻¹		-0.5		0	0.5	1		1.5	x10⁻¹
			aTGC Lin	nits @95	% C.L.						aTGC L	imits (<u>@</u> 95%	% C.L.

Ξ Zγ limits ($Z\gamma \rightarrow vv\gamma$):

- ATLAS fits events with $E_T(\gamma) > 100 \text{ GeV}$
- CMS uses E_T(γ) > 400 GeV
- No deviations from the SM have been been observed
 - LHC limits already at the level of LEP limits

The highest-mass central dijet very well measured event. Two central jets with invariant mass of 4.7 TeV

Dibosons: Wy/Zy

Dibosons: Wy and Zy @ 7 TeV

Challenge (1): missing energy

Challenge (2): Jet veto

(reduce overwhelming top background)

Dibosons: ZZ Production

$ZZ \rightarrow 4$ leptons (eeee, $\mu\mu\mu\mu$, $ee\mu\mu$)

 $66 < M_{Z1} < 116 GeV$

Two Z bosons on-shell

or

One Z boson on-shell and the other off-shell

Also used: Z → vv

Dibosons: ZZ @ 7 TeV

ZZ → 4 leptons (eeee, µµµµ, eeµµ)

SC

Dibosons: ZZ @ 7 TeV

ZZ → 4 leptons (eeee, µµµµ, eeµµ)

ATLAS Workshop Argonne Jul 2013 Joao Guimaraes 61

SC

Diboson Physics: WW, WZ, ZZ, Wγ, Ζγ,γγ Examples (7 TeV, 4.6 fb⁻¹):

Wγ: Normalized fiducial differential cross section

Agreement with NLO MCFM calculation not great Exclusive calculation (N_{jet} =0) is good

Similar observations at CMS

Zγ: Search for narrow resonances (techicolor)

 $m_{techni-meson} > \sim 500 \text{ GeV}$

