CC Coherent Pion Production at MINERvA

Aaron Mislivec University of Rochester Argonne Seminar Nov 23, 2015

Outline

- Neutrino oscillation experiments and coherent pion production
- CC coherent pion production at MINERvA
- T2K and coherent pion production

Neutrino Oscillation Experiments and Coherent Pion Production

Neutrino Oscillation Measurements

- We are in the era of precision neutrino oscillation measurements
- Current and future oscillation experiments aim to
 - resolve mass hierarchy
 - measure CP violation

Neutrino Oscillation Experiments and Neutrino-Nucleus Interactions

- All neutrino oscillation experiments
 - must measure neutrino energy E_{y}
 - predict the E_v spectrum, which requires neutrino-nucleus (vA) interaction models
- vA interaction models predict
 - interaction rate as a function of E_{χ}
 - final state used in reconstructing E_{y}
- Oscillation experiments use neutrino event generators (e.g. GENIE, NEUT) – Monte Carlo simulation of vA interactions

Predicted CP violation effect at DUNE arXiv:1307.7335

Coherent Pion Production

- Produces forward lepton and pion while leaving nucleus in its ground state
- Model independent features:
 - No nuclear break-up
 - Small 4-momentum transfer to the nucleus, $|t|=|(p_
 u-p_\mu-p_\pi)^2|\lesssim \hbar^2/R^2$
- CC coherent $\pi^+ {\rm production}$ a background for ν_μ disappearance
 - Affects E_{ν} reconstruction
 - Important at low- θ_{μ}
- NC coherent π^0 production a background for ν_e appearance $(\pi^0 \rightarrow \gamma \gamma)$

Coherent Pion Production Model

To date, neutrino event generators employed by oscillation experiments use the Rein-Sehgal model for coherent scattering:

• Per Adler's PCAC theorem,

$$\frac{d\sigma^{\pi^+}}{dQ^2 dy d|t|} \bigg|_{Q^2 = 0} = \frac{G_F^2 M}{2\pi^2} f_{\pi^+}^2 \frac{1 - y}{y} \left. \frac{d\sigma(\pi^+ A \to \pi^+ A)}{d|t|} \right|_{E_{\pi} = E_Y}$$

• Extrapolates to $Q^2 > 0$ via a multiplicative axial vector dipole form factor with $M_A \approx 1 \text{ GeV}$

$$F(Q^2) = 1/(1+Q^2/M_A^2)^2$$

- πA cross section
 - parameterized using πN scattering data Falls with increasing $|t|: \sim e^{-|t|R^2/\hbar^2}$
- For CC reaction, correction for final state lepton mass

CC Coherent Pion Production Data

Past measurements for $E_{y} \ge 2 \text{ GeV}$

- Identified coherence by measuring ltl
- Agreement with Rein-Sehgal model

• Found no evidence for coherence at low-Q²

NC Coherent Pion Production Data

- Model dependent measurement
 - Can't measure E_{y} , Itl
 - For bare π^0 events, look for excess at low- θ_{π}
- Flux averaged measurement, $\langle E \rangle$

NC Coherent Pion Production Constraint

In the PCAC picture, the CC channel provides a constraint on the NC channel:

• Again, per Adler's PCAC theorem,

$$\left. \frac{d\sigma^{\pi^+}}{dQ^2 dy d|t|} \right|_{Q^2 = 0} = \frac{G_F^2 M}{2\pi^2} f_{\pi^+}^2 \frac{1 - y}{y} \left. \frac{d\sigma(\pi^+ A \to \pi^+ A)}{d|t|} \right|_{E_\pi = E_Y}$$

• For isoscalar targets

$$\frac{d\sigma(\pi^+ A \to \pi^+ A)}{d|t|} = \frac{d\sigma(\pi^0 A \to \pi^0 A)}{d|t|}$$

Then

$$\frac{d\sigma^{\pi^+}}{dQ^2 dy d|t|} = 2\left(\frac{d\sigma^{\pi^0}}{dQ^2 dy d|t|}\right) \times I.m.c$$

since $f_{\pi^+}^2 = 2f_{\pi^0}^2$

Other Coherent Models

- Newer coherent models include
 - Berger-Sehgal
 - Based on Adler's PCAC theorem
 - Main difference from Rein-Sehgal is πA cross section from empirical fit to πC scattering data
 - Alvarez-Ruso
 - Microscopic model
 - Sum of 1π production on all nucleons in the nucleus
 - Initial and final state nucleon constrained to the same state
 - π distortion in nuclear medium

CC Coherent Pion Production at MINERvA

MINERvA

- Dedicated vA scattering experiment
- Precision measurements of vA cross sections and nuclear effects at few GeV E_v
- Testing ground for the GENIE neutrino event generator
- Utilizes Fermilab's NuMI v-beam
- Results shown herein from low energy (LE) beam configuration

Coherent Pion Production at MINERvA

- MINERvA has measured CC coherent π production on carbon in its fully active tracker region (CH) for $1.5 < E_y < 20$ GeV
- Model-independent identification of coherent interactions by
 - resolving vertex activity
 - reconstructing $|t| = |(p_v p_\mu p_\pi)|^2$

CC Coherent Pion Production Candidate

MINERvA Data v CC Coherent Candidate

Event Selection: Reconstruction Cuts

- Reconstructed vertex in tracker region (CH)
- Muon reconstructed in both MINERvA and MINOS for p_{μ} and charge
- Second reconstructed track at vertex for θ_{π}
- $E_y > 1.5$ GeV: muon reconstruction threshold
- $E_v < 20$ GeV: flux uncertainties

Event Selection: Proton Score

- Proton Score likelihood that dE/dx profile along hadron track is due to a proton
- v_{μ} measurement requires Proton Score < 0.35 to suppress CC quasi-elastic and resonance background

Event Selection: Vertex Energy

Visible energy within a region around the vertex is required to be consistent with a minimum ionizing muon and pion: $30 < E_{vtx} < 70 \text{ MeV}$

Event Selection: Itl

Background Tuning

- Above plots: sideband $(0.2 < |t| < 0.6 \text{ GeV}^2)$ distributions used for background tuning
- Background normalizations fit to data in
 - E_{π} and Q^2 for ν_{μ}
 - E_{π} only for anti- ν_{μ}
- Sideband sample passes E_{vtx} cut minimize sensitivity of background tuning to data-MC disagreement in E_{vtx} cut efficiency due to mis-modeled vertex activity

Background Tuning

Above plots show sideband distributions after applying background normalizations from the fit

Background	\mathbf{v}_{μ}	Anti-v _µ
CCQE	1.03 +/- 0.04	1.0 (fixed)
Non-CCQE W < 1.4 GeV	0.64 +/- 0.07	0.94 +/- 0.07
1.4 < W < 2.0 GeV	0.70 +/- 0.05	0.72 +/- 0.08
W > 2.0 GeV	1.4 +/- 0.2	2.2 +/- 0.3

Cross Section Calculation

Systematics: Flux

Flux Prediction Uncertainties:

- Hadron production at NuMI target constrained by external data (NA49)
- Beam focusing & unconstrained interactions

Systematics: Interaction Model

- GENIE interaction model parameters
 - M_{A} RES, intra-nuclear scattering, etc.
- Sideband Model
 - Accounts for remaining θ_{π} disagreement in the sideband after background tuning
- Vertex Energy
 - Accounts for unsimulated multi-nucleon effects
 - Guided by MINERvA's CCQE results, add a final state proton to 25% of events with a target neutron

Systematics: Detector Model

- GEANT hadron propagation constrained by external hA data
- Detector alignment wrt neutrino beam
- Energy Response
 - Muon energy uncertainty from range/curvature
 - Pion/proton response constrained by test beam program

MINERvA Test Beam

- A scaled-down version of the MINERvA detector in a tertiary pion beam at the Fermilab Test Beam Facility
- Constrains the uncertainty on MINERvA's response to pions (protons) to 5% (3%)
 - Detector mass model and absolute energy scale
 - Scintillator optical model
 - Photomultiplier tube (PMT) model

MINERvA CC Coherent Cross Sections: E

At few GeV, the cross section from MINERvA data is smaller than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

MINERvA CC Coherent Cross Sections: $E_{\pi} \& \theta_{\pi}$

MINERvA data for coherent scattering exhibits harder and more forward pions than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

MINERvA CC Coherent Cross Sections: Q²

MINERvA data can also test PCAC models' (e.g. Rein-Sehgal) extrapolation from $Q^2 = 0$:

$$F(Q^2) = 1/(1 + Q^2/M_A^2)^2, M_A \approx 1 \,\text{GeV}$$

T2K and Coherent Pion Production

T2K

Phys.Rev.Lett. 112 (2014) 061802

J-PARC/Super-K off-axis neutrino oscillation experiment measuring $v_{\mu} \rightarrow v_{\mu}$ and $v_{\mu} \rightarrow v_{e}$

T2K & Neutrino-Nucleus Interactions

Phys.Rev. D91 (2015) 7,072010

Source of uncertainty	$ u_{\mu} \ \mathrm{CC}$	$\nu_e \ { m CC}$
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI+SI(+PN)	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w ND280 constraint)	7.7%	6.8%

T2K relative uncertainty (1 σ) on the predicted ν_{μ} CC and ν_{e} CC oscillated event rate

- Neutrino-nucleus interaction model uncertainties are the largest source of systematic error for T2K's oscillation analyses
- ND280 data used to constrain event rate as predicted by the NEUT event generator

T2K & Coherent Pion Production

- NEUT cross section parameters constrained to ND280 CC0 π , CC1 π^+ , CCOther data sets
- ND280 data does not have sensitivity to constrain CC or NC coherent π production
- CC coherent ~0.5% background for $\nu_{\mu} \rightarrow \nu_{\mu}$
- NC Coherent ~1% background for $v_{\mu} \rightarrow v_{e}$
- T2K applies 100% uncertainty on CC & NC coherent π production due to non-observation at $E_{\nu} \sim 1$ GeV by K2K & SciBooNE
- Phys.Rev. D91 (2015) 7,072010

NEUT vs. MINERvA

- MINERvA data shows NEUT mis-models the CC coherent pion kinematics
- Presumably due to mis-modeled πA elastic cross section
- T2K using MINERvA data to correct NEUT coherent prediction and constrain the uncertainty

Summary

- Understanding coherent pion production is important for neutrino oscillation measurements
- MINERvA has made a model-independent measurement of CC coherent pion production that constrains the
 - interaction rate
 - pion kinematics
 - Q²-dependence
- MINERvA measurement is already being used to
 - reduce systematic uncertainty in oscillation measurements
 - improve coherent pion production models

Extra: Diffractive Pion Production

Diffractive Pion Production

Coherent π Production

Diffractive π Production on H

- MINERvA's CH scintillator has free protons in equal number to the carbon nuclei
- Diffractive π production on hydrogen
 - indistinguishable from coherent π production when the recoil proton is undetected
 - not simulated in GENIE
 - No calculation of exclusive diffractive π production valid for W < 2 GeV

Diffractive Pion Production Acceptance

Estimated diffractive / coherent acceptance $\varepsilon_{c/d}$

- Assume difference is due only to the recoil proton's ionization and the vertex energy cut
- Evaluate by adding the visible energy from a recoil proton to the vertex energy of simulated coherent interactions
- Calculate as a function of $|t|_{diff} = |(p_v p_\mu p_\pi)|^2 = 2m_p T_p$
- Integrated $\varepsilon_{c/d} \approx 20\%$

Diffractive Pion Production Estimate

- No calculation of exclusive diffractive π production valid for W < 2 GeV
- Calculate diffractive do/dltl using
 - Inclusive $v_{\mu} p \rightarrow \mu^{-} \pi^{+} p$ calculation by Kopeliovich et al. based on Adler's relation
 - GENIE to predict non-diffractive component
- From the diffractive d σ /dltl and $\varepsilon_{c/d}$, the diffractive event rate is 7% (4%) of the v_{μ} (anti- v_{μ}) coherent event rate as predicted by GENIE

Diffractive Pion Production Search

Amongst the events passing all selection cuts, look for a large energy deposition in a single strip resulting from the recoil proton ionization near the event vertex

- ± 2 planes and ± 70 mm from the event vertex
- corresponds to the range of a $T_p = 50$ MeV proton ($|t|_{diff} = 2m_p T_p \approx 0.1$ GeV²)

Neutrino Diffractive Pion Production Search

- Diffractive MC sample:
 - GENIE $v_{\mu} p \rightarrow \mu^{-} \pi^{+} p$ passing selection cuts
 - weighted to the diffractive d σ /dltl x $\varepsilon_{c/d}$ shape
 - Diffractive normalization $\alpha_{diff} = N_{diff} / N_{coh}$, where N_{diff} and N_{coh} are integrated diffractive and coherent simulated event rates
 - Plots show diffractive prediction for $\alpha_{diff} = 0.2$
- Fit for α_{diff} in the max vertex strip energy (MVSE) region 16 < MVSE < 40 MeV
- $\alpha_{diff} = 0.00 \pm 0.07$ from fit
- $\alpha_{diff} = 0.07$ from calculation

Antineutrino Diffractive Pion Production Search

- Diffractive MC sample:
 - GENIE $v_{\mu} p \rightarrow \mu^{-} \pi^{+} p$ passing selection cuts
 - weighted to the diffractive d σ /dltl x $\varepsilon_{c/d}$ shape
- Diffractive norm α_{diff} defined as $N_{diff} = \alpha_{diff} N_{coh}$, where N_{diff} and N_{coh} are integrated diffractive and coherent simulated event rates
- Plots show diffractive prediction for $\alpha_{diff} = 0.2$
- Fit for α_{diff} in the max vertex strip energy (MVSE) region 16 < MVSE < 40 MeV
- $\alpha_{\text{diff}} = -0.03 \pm 0.07$ from fit
- $\alpha_{diff} = 0.04$ from calculation

Backup

ND280

- T2K's off-axis near detector
- Scintillator tracker with interleaved TPCs
- Upstream π^0 detector (P0D)
- Side and downstream ECALs
- Constrain neutrino event rate/cross sections

Flux at SK

T2K unoscillated neutrino flux prediction at SK Phys.Rev. D91 (2015) 7,072010

Proton Score Calculation

$$score_{p(\pi)} = 1.0 - \frac{\left(\frac{\chi^2}{ndf}\right)_{p(\pi)}^2}{\sqrt{\left(\frac{\chi^2}{ndf}\right)_p^2 + \left(\frac{\chi^2}{ndf}\right)_\pi^2}}.$$

MINERvA Test Beam Proton Response

