CC Coherent Pion Production at MINERνA

Aaron Mislivec University of Rochester Argonne Seminar Nov 23, 2015

1

Outline

- Neutrino oscillation experiments and coherent pion production
- CC coherent pion production at MINER vA
- T2K and coherent pion production

Neutrino Oscillation Experiments and Coherent Pion Production

Neutrino Oscillation Measurements

- We are in the era of precision neutrino oscillation measurements
- Current and future oscillation experiments aim to
	- resolve mass hierarchy
	- measure CP violation

Neutrino Oscillation Experiments and Neutrino-Nucleus Interactions

- All neutrino oscillation experiments
	- must measure neutrino energy E_{v}
	- $=$ predict the E_{γ} spectrum, which requires neutrino-nucleus (νA) interaction models
- *vA* interaction models predict
	- $-$ interaction rate as a function of E_{ν}
	- final state used in reconstructing E_y
- Oscillation experiments use neutrino event generators (e.g. GENIE, NEUT) – Monte Carlo simulation of νA interactions

Predicted CP violation effect at DUNE arXiv:1307.7335

Coherent Pion Production

- Produces forward lepton and pion while leaving nucleus in its ground state
- Model independent features:
	- No nuclear break-up
	- Small 4-momentum transfer to the nucleus, $|t| = |(p_\nu - p_\mu - p_\pi)^2| \lesssim \hbar^2/R^2$
- CC coherent π^+ production a background for ν_μ disappearance
	- Affects E_{ν} reconstruction
	- Important at low- θ_{μ}
- NC coherent π^0 production a background for ν_e appearance $(\pi^0 \rightarrow \gamma \gamma)$

Coherent Pion Production Model

To date, neutrino event generators employed by oscillation experiments use the Rein-Sehgal model for coherent scattering:

• Per Adler's PCAC theorem,

$$
\left. \frac{d\sigma^{\pi^+}}{dQ^2dyd|t|} \right|_{Q^2=0} = \frac{G_F^2M}{2\pi^2} f_{\pi^+}^2 \, \frac{1-y}{y} \, \left. \frac{d\sigma(\pi^+ A \to \pi^+ A)}{d|t|} \right|_{E_{\pi}=E_y}
$$

• Extrapolates to $Q^2 > 0$ via a multiplicative axial vector dipole form factor with $M_A \approx 1$ GeV

$$
F(Q^2) = 1/(1+Q^2/M_A^2)^2
$$

- \bullet π A cross section
	- parameterized using πN scattering data
	- Falls with increasing $|t|$: $\sim e^{-|t|R^2/\hbar^2}$
- For CC reaction, correction for final state lepton mass

CC Coherent Pion Production Data

Past measurements for $E_{\gamma} \ge 2 \text{ GeV}$

- Identified coherence by measuring ltl
- Agreement with Rein-Sehgal model

Found no evidence for coherence at low- Q^2

NC Coherent Pion Production Data

- Model dependent measurement
	- Can't measure E ν , |t|
	- For bare π^0 events, look for excess at low- θ_{π}
- Flux averaged measurement, $\langle E \rangle$

NC Coherent Pion Production Constraint

In the PCAC picture, the CC channel provides a constraint on the NC channel:

• Again, per Adler's PCAC theorem,

$$
\left. \frac{d\sigma^{\pi^+}}{dQ^2dyd|t|} \right|_{Q^2=0} = \frac{G_F^2M}{2\pi^2} f_{\pi^+}^2 \frac{1-y}{y} \left. \frac{d\sigma(\pi^+ A \to \pi^+ A)}{d|t|} \right|_{E_{\pi}=E_y}
$$

• For isoscalar targets

$$
\frac{d\sigma(\pi^+A\to\pi^+A)}{d|t|}=\frac{d\sigma(\pi^0A\to\pi^0A)}{d|t|}
$$

• Then

$$
\frac{d\sigma^{\pi^+}}{dQ^2dyd|t|} = 2\left(\frac{d\sigma^{\pi^0}}{dQ^2dyd|t|}\right) \times \text{ } l.m.c.
$$
\nsince $f_{\pi^+}^2 = 2f_{\pi^0}^2$

Other Coherent Models

- Newer coherent models include
	- Berger-Sehgal
		- Based on Adler's PCAC theorem
		- Main difference from Rein-Sehgal is πA cross section from empirical fit to πC scattering data
	- Alvarez-Ruso
		- Microscopic model
		- Sum of 1π production on all nucleons in the nucleus
		- Initial and final state nucleon constrained to the same state
		- \bullet π distortion in nuclear medium

CC Coherent Pion Production at MINERνA

MINERνA

- Dedicated vA scattering experiment
- Precision measurements of vA cross sections and nuclear effects at few GeV E ν
- Testing ground for the GENIE neutrino event generator
- Utilizes Fermilab's NuMI ν-beam
- Results shown herein from low energy (LE) beam configuration

Coherent Pion Production at MINERvA

- MINERvA has measured CC coherent π production on carbon in its fully active tracker region (CH) for $1.5 < E_{\nu} < 20 \text{ GeV}$
- Model-independent identification of coherent interactions by
	- resolving vertex activity
	- reconstructing $|t|=|(p_v-p_\mu-p_\pi)|^2$

CC Coherent Pion Production Candidate

MINERνA Data ν μ CC Coherent Candidate

Event Selection: Reconstruction Cuts

- Reconstructed vertex in tracker region (CH)
- Muon reconstructed in both MINERvA and MINOS for p_{μ} and charge
- Second reconstructed track at vertex for θ_{π}
- $\text{E}_{\text{y}} > 1.5 \text{ GeV}$: muon reconstruction threshold
- $E_v < 20$ GeV: flux uncertainties

Event Selection: Proton Score

- Proton Score likelihood that dE/dx profile along hadron track is due to a proton
- v_{μ} measurement requires Proton Score < 0.35 to suppress CC quasi-elastic and resonance background

Event Selection: Vertex Energy

Visible energy within a region around the vertex is required to be consistent with a minimum ionizing muon and pion: $30 < E_{\text{max}} < 70 \text{ MeV}$ vtx

Event Selection: |t|

Background Tuning

- Above plots: sideband $(0.2 < |t| < 0.6$ GeV²) distributions used for background tuning
- Background normalizations fit to data in
	- E_{π} and Q^2 for v_{μ}
	- $=$ E_{π} only for anti- v_{μ}
- Sideband sample passes E_{vtx} cut minimize sensitivity of background tuning to data-MC disagreement in E_{vtx} cut efficiency due to mis-modeled vertex activity

Background Tuning

Above plots show sideband distributions after applying background normalizations from the fit

Cross Section Calculation

Systematics: Flux

Flux Prediction Uncertainties:

- Hadron production at NuMI target constrained by external data (NA49)
- Beam focusing & unconstrained interactions

Systematics: Interaction Model

- **GENIE** interaction model parameters
	- $-$ M_ARES, intra-nuclear scattering, etc.
- **Sideband Model**
	- Accounts for remaining θ_{π} disagreement in the sideband after background tuning
- Vertex Energy
	- Accounts for unsimulated multi-nucleon effects
	- Guided by MINERvA's CCQE results, add a final state proton to 25% of events with a target neutron

Systematics: Detector Model

- **GEANT** hadron propagation constrained by external hA data
- Detector alignment wrt neutrino beam
- **Energy Response**
	- Muon energy uncertainty from range/curvature
	- Pion/proton response constrained by test beam program

MINERνA Test Beam

- A scaled-down version of the MINERvA detector in a tertiary pion beam at the Fermilab Test Beam Facility
- Constrains the uncertainty on MINERvA's response to pions (protons) to 5% (3%)
	- Detector mass model and absolute energy scale
	- Scintillator optical model
	- Photomultiplier tube (PMT) model

MINERνA CC Coherent Cross Sections: E ν

At few GeV, the cross section from MINERvA data is smaller than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

MINERνA CC Coherent Cross Sections: E & θ π π

MINERvA data for coherent scattering exhibits harder and more forward pions than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

MINERVA CC Coherent Cross Sections: Q^2

MINERνA data can also test PCAC models' (e.g. Rein-Sehgal) extrapolation from $Q^2 = 0$:

$$
F(Q^2) = 1/(1+Q^2/M_A^2)^2, M_A \approx 1\,\mathrm{GeV}
$$

T2K and Coherent Pion Production

T2K

Phys.Rev.Lett. 112 (2014) 061802

J-PARC/Super-K off-axis neutrino oscillation experiment measuring $v \rightarrow v$ and $v \rightarrow v$ μ μ μ e

T2K & Neutrino-Nucleus Interactions

Phys.Rev. D91 (2015) 7, 072010

T2K relative uncertainty (1σ) on the predicted v_μ CC and v_e CC oscillated event rate

- Neutrino-nucleus interaction model uncertainties are the largest source of systematic error for T2K's oscillation analyses
- ND280 data used to constrain event rate as predicted by the NEUT event generator

T2K & Coherent Pion Production

- NEUT cross section parameters constrained to ND280 $CC0\pi, CC1\pi^*$, CCOther data sets
- ND280 data does not have sensitivity to constrain CC or NC coherent π production
- CC coherent ~0.5% background for $v_{\mu} \rightarrow v$ μ
- NC Coherent ~1% background for $v_{\mu} \rightarrow v_{e}$
- T2K applies 100% uncertainty on CC & NC coherent π production due to nonobservation at $E_v \sim 1$ GeV by K2K & **SciBooNE**
- Phys.Rev. D91 (2015) 7, 072010

NEUT vs. MINERνA

- MINERVA data shows NEUT mis-models the CC coherent pion kinematics
- Presumably due to mis-modeled πA elastic cross section
- T2K using MINERvA data to correct NEUT coherent prediction and constrain the uncertainty

Summary

- Understanding coherent pion production is important for neutrino oscillation measurements
- MINERvA has made a model-independent measurement of CC coherent pion production that constrains the
	- interaction rate
	- pion kinematics
	- $-$ Q²-dependence
- MINERvA measurement is already being used to
	- reduce systematic uncertainty in oscillation measurements
	- improve coherent pion production models

Extra: Diffractive Pion Production

Diffractive Pion Production

Coherent π Production Diffractive π Production on H

- MINERVA's CH scintillator has free protons in equal number to the carbon nuclei
- Diffractive π production on hydrogen
	- indistinguishable from coherent π production when the recoil proton is undetected
	- not simulated in GENIE
	- No calculation of exclusive diffractive π production valid for $W < 2$ GeV

Diffractive Pion Production Acceptance

Estimated diffractive / coherent acceptance $\varepsilon_{\rm c/d}$

- Assume difference is due only to the recoil proton's ionization and the vertex energy cut
- Evaluate by adding the visible energy from a recoil proton to the vertex energy of simulated coherent interactions
- Calculate as a function of $|t|_{diff} = |(p_v p_u p_x)|^2 = 2m_p T_p$
- Integrated $\epsilon_{\rm c/d} \approx 20\%$

Diffractive Pion Production Estimate

- No calculation of exclusive diffractive π production valid for $W < 2$ GeV
- Calculate diffractive $d\sigma/d$ ltl using
	- Inclusive $v_\mu p \to \mu \pi^+ p$ calculation by Kopeliovich et al. based on Adler's relation
	- GENIE to predict non-diffractive component
- From the diffractive do/dltl and $\varepsilon_{\rm c/d}$, the diffractive event rate is 7% (4%) of the v_{μ} (anti- v_{μ}) coherent event rate as predicted by GENIE

Diffractive Pion Production Search

Amongst the events passing all selection cuts, look for a large energy deposition in a single strip resulting from the recoil proton ionization near the event vertex

- ± 2 planes and ± 70 mm from the event vertex
- corresponds to the range of a T_p = 50 MeV proton (ltl_{diff} = $2m_p T_p \approx 0.1 \text{ GeV}^2$)

Neutrino Diffractive Pion Production Search

- Diffractive MC sample:
	- GENIE v_μ p $\rightarrow \mu \pi^+$ p passing selection cuts
	- weighted to the diffractive do/dltl x $\varepsilon_{c/d}$ shape
- Diffractive normalization $\alpha_{\text{diff}} = N_{\text{diff}} / N_{\text{coh}}$, where N_{diff} and N_{coh} are integrated diffractive and coherent simulated event rates
- Plots show diffractive prediction for $\alpha_{\text{diff}} = 0.2$
- Fit for α_{diff} in the max vertex strip energy (MVSE) region $16 < \text{MVSE} < 40 \text{ MeV}$
- $\alpha_{\text{diff}} = 0.00 \pm 0.07$ from fit
- $\alpha_{\text{diff}} = 0.07$ from calculation

Antineutrino Diffractive Pion Production Search

- Diffractive MC sample:
	- GENIE v_μ p $\rightarrow \mu \pi^+$ p passing selection cuts
	- weighted to the diffractive do/dltl x $\varepsilon_{c/d}$ shape
- Diffractive norm α_{diff} defined as $N_{\text{diff}} = \alpha_{\text{diff}} N_{\text{coh}}$, where N_{diff} and N_{coh} are integrated diffractive and coherent simulated event rates
- Plots show diffractive prediction for $\alpha_{\text{diff}} = 0.2$
- Fit for α_{diff} in the max vertex strip energy (MVSE) region $16 < \text{MVSE} < 40 \text{ MeV}$
- $\alpha_{\text{diff}} = -0.03 \pm 0.07$ from fit
- $\alpha_{\text{diff}} = 0.04$ from calculation

Backup

ND280

- T2K's off-axis near detector
- Scintillator tracker with interleaved TPCs
- Upstream π^0 detector (P0D)
- Side and downstream ECALs
- Constrain neutrino event rate/cross sections

Flux at SK

T2K unoscillated neutrino flux prediction at SK Phys.Rev. D91 (2015) 7, 072010

Proton Score Calculation

$$
score_{p(\pi)} = 1.0 - \frac{\left(\frac{\chi^2}{ndf}\right)^2_{p(\pi)}}{\sqrt{\left(\frac{\chi^2}{ndf}\right)^2_p + \left(\frac{\chi^2}{ndf}\right)^2_{\pi}}}.
$$

MINERνA Test Beam Proton Response

