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Outline

● Neutrino oscillation experiments and coherent pion 
production

● CC coherent pion production at MINERνA

● T2K and coherent pion production
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Neutrino Oscillation Experiments 
and

Coherent Pion Production
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Neutrino Oscillation Measurements

● We are in the era of precision 
neutrino oscillation 
measurements

● Current and future oscillation 
experiments aim to

– resolve mass hierarchy

– measure CP violation  
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Neutrino Oscillation Experiments
and 

Neutrino-Nucleus Interactions
● All neutrino oscillation experiments

– must measure neutrino energy E
ν

– predict the E
ν
 spectrum, which requires 

neutrino-nucleus (νA) interaction models

● νA interaction models predict

– interaction rate as a function of E
ν
 

– final state used in reconstructing E
ν
 

● Oscillation experiments use neutrino event 
generators (e.g. GENIE, NEUT) – Monte 
Carlo simulation of νA interactions

Predicted CP violation effect at DUNE 
arXiv:1307.7335
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Coherent Pion Production
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Coherent Pion Production Model
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Past measurements for E
ν 
≥ 2 GeV

● Identified coherence by measuring |t|

● Agreement with Rein-Sehgal model

CHARM II
Phys. Lett. B 313, 267 (1993)

CC Coherent Pion Production Data

Recent measurements at E
ν
 ~ 1 GeV 

(K2K, SciBooNE)  

● Unable to measure E
π
, |t|

● Found no evidence for coherence 
at low-Q2

SciBooNE

SciBooNE
Phys. Rev. D 78, 112004 (2008)
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NC Coherent Pion Production Data

● Model dependent measurement

– Can't measure E
ν
, |t|

– For bare π0 events, look for excess at low-θ
π

● Flux averaged measurement, <E
ν
>

CHARM
Phys. Lett. B157, 469 (1985)

SciBooNE
Phys. Rev. D81, 111102 (2010)
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NC Coherent Pion Production Constraint



11

Other Coherent Models

● Newer coherent models include

– Berger-Sehgal
● Based on Adler's PCAC theorem
● Main difference from Rein-Sehgal is πA cross section 

from empirical fit to πC scattering data

– Alvarez-Ruso
● Microscopic model
● Sum of 1π production on all nucleons in the nucleus
● Initial and final state nucleon constrained to the same 

state
● π distortion in nuclear medium
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CC Coherent Pion Production
 at MINERνA
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MINERνA

Fiducial Region

● Dedicated νA scattering experiment

● Precision measurements of νA cross sections and nuclear effects at 
few GeV E

ν

● Testing ground for the GENIE neutrino event generator

● Utilizes Fermilab's NuMI ν-beam

● Results shown herein from low energy (LE) beam configuration
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Coherent Pion Production at MINERvA

Fiducial Region

● MINERνA has measured CC coherent π production on carbon 
in its fully active tracker region (CH) for 1.5 < E

ν
 < 20 GeV

● Model-independent identification of coherent interactions by

– resolving vertex activity

– reconstructing |t|=|(p
ν
-p

μ
-p

π
)|2
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CC Coherent Pion Production Candidate
MINERνA Data ν
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Event Selection: Reconstruction Cuts

MINERνA Data
ν

μ 
CC Coherent Candidate

π+
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● Reconstructed vertex in tracker region (CH)

● Muon reconstructed in both MINERνA and MINOS for p
μ
 and charge

● Second reconstructed track at vertex for θ
π

● E
ν
 > 1.5 GeV: muon reconstruction threshold

● E
ν
 < 20 GeV: flux uncertainties
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Event Selection: Proton Score

MINERνA Data
ν

μ 
CC Coherent Candidate

π+
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● Proton Score – likelihood that dE/dx profile along hadron 
track is due to a proton

● ν
μ
 measurement requires Proton Score < 0.35 to suppress 

CC quasi-elastic and resonance background
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Event Selection: Vertex Energy

Visible energy within a region around the 
vertex is required to be consistent with a 
minimum ionizing muon and pion:
30 < E

vtx
 < 70 MeV

MINERνA Data
ν

μ 
CC Coherent Candidate

π+

μ-

Module Number
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tr

ip
 N
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er
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Event Selection: |t|

● MINERνA is able to reconstruct the 4-momentum 
transfer to the nucleus, |t|=|(p

ν
-p

μ
-p

π
)|2

● Coherent candidates: |t| < 0.125 GeV2

● Sideband for tuning background: 0.2 < |t| < 0.6 GeV2
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Background Tuning

● Above plots: sideband (0.2 < |t| < 0.6 GeV2) distributions used for background tuning

● Background normalizations fit to data in

– E
π
 and Q2 for ν

μ

– E
π
 only for anti-ν

μ
 

● Sideband sample passes E
vtx

 cut – minimize sensitivity of background tuning to data-

MC disagreement in E
vtx

 cut efficiency due to mis-modeled vertex activity
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Background Tuning

Background ν
μ

Anti-ν
μ

CCQE 1.03 +/- 0.04 1.0 (fixed)

Non-CCQE W < 1.4 GeV 0.64 +/- 0.07 0.94 +/- 0.07

1.4 < W < 2.0 GeV 0.70 +/- 0.05 0.72 +/- 0.08

W > 2.0 GeV 1.4 +/- 0.2 2.2 +/- 0.3

Above plots show sideband 
distributions after applying 
background normalizations 
from the fit
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Cross Section Calculation

Flux prediction

Number of 
scattering targets

Unfolding to correct 
for resolution Efficiency & acceptance
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Flux Prediction Uncertainties:

● Hadron production at NuMI target 
constrained by external data (NA49)

● Beam focusing & unconstrained interactions

Systematics: Flux

x
F
 ≈ p

z
/p

proton

pC→πX
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● GENIE interaction model parameters

–  M
A
RES, intra-nuclear scattering, etc.

● Sideband Model

– Accounts for remaining θ
π
 disagreement in 

the sideband after background tuning

● Vertex Energy

– Accounts for unsimulated multi-nucleon 
effects

– Guided by MINERvA's CCQE results, add a 
final state proton to 25% of events with a 
target neutron

Systematics:
Interaction Model
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Systematics:
Detector Model

● GEANT hadron propagation constrained 
by external hA data

● Detector alignment wrt neutrino beam

● Energy Response

– Muon energy uncertainty from 
range/curvature 

– Pion/proton response constrained by 
test beam program
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MINERνA Test Beam

● A scaled-down version of the MINERνA 
detector in a tertiary pion beam at the 
Fermilab Test Beam Facility

● Constrains the uncertainty on MINERνA's 
response to pions (protons) to 5% (3%)

– Detector mass model and absolute 
energy scale

– Scintillator optical model

– Photomultiplier tube (PMT) model
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MINERνA CC Coherent Cross Sections: E
ν

At few GeV, the cross 
section from MINERvA 
data is smaller than the 
prediction of the Rein-

Sehgal coherent model as 
implemented in GENIE
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MINERνA CC Coherent Cross Sections: E
π
 & θ

π

MINERvA data for 
coherent scattering 

exhibits harder and more 
forward pions than the 
prediction of the Rein-

Sehgal coherent model as 
implemented in GENIE
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MINERνA CC Coherent Cross Sections: Q2

MINERνA data can also test PCAC models' 
(e.g. Rein-Sehgal) extrapolation from Q2 = 0:
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T2K and
Coherent Pion Production
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T2K

J-PARC/Super-K off-axis 
neutrino oscillation 
experiment measuring 
ν

μ
→ν

μ 
and ν

μ
→ν

e

Phys.Rev.Lett. 112 (2014) 061802
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● Neutrino-nucleus interaction 
model uncertainties are the 
largest source of systematic error 
for T2K's oscillation analyses

● ND280 data used to constrain 
event rate as predicted by the 
NEUT event generator

T2K & Neutrino-Nucleus Interactions

T2K relative uncertainty (1σ) on the predicted 
ν

μ
 CC and ν

e
 CC  oscillated event rate

Phys.Rev. D91 (2015) 7, 072010
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T2K & Coherent Pion 
Production

● NEUT cross section parameters constrained 
to ND280 CC0π, CC1π+, CCOther data sets

● ND280 data does not have sensitivity to 
constrain CC or NC coherent π  production

● CC coherent ~0.5% background for ν
μ
→ν

μ

● NC Coherent ~1% background for ν
μ
→ν

e

● T2K applies 100% uncertainty on CC & NC 
coherent π production due to non-
observation at E

ν
 ~ 1 GeV by K2K & 

SciBooNE

● Phys.Rev. D91 (2015) 7, 072010
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NEUT vs. MINERνA

● MINERνA data shows NEUT mis-models the CC coherent pion kinematics

● Presumably due to mis-modeled πA elastic cross section

● T2K using MINERνA data to correct NEUT coherent prediction and 
constrain the uncertainty

Phys.Rev.Lett. 113 (2014) 261802
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Summary
● Understanding coherent pion production is important for 

neutrino oscillation measurements

● MINERνA has made a model-independent measurement of 
CC coherent pion production that constrains the

– interaction rate

– pion kinematics

– Q2-dependence

● MINERνA measurement is already being used to 

– reduce systematic uncertainty in oscillation 
measurements 

– improve coherent pion production models
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Extra:
Diffractive Pion Production
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Diffractive Pion Production

Diffractive π Production on HCoherent π Production

● MINERνA's CH scintillator has free protons in equal number to the carbon nuclei

● Diffractive π production on hydrogen

– indistinguishable from coherent π production when the recoil proton is 
undetected

– not simulated in GENIE

– No calculation of exclusive diffractive π production valid for W < 2 GeV
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Estimated diffractive / coherent acceptance ε
c/d

● Assume difference is due only to the recoil proton's 
ionization and the vertex energy cut

● Evaluate by adding the visible energy from a recoil proton 
to the vertex energy of simulated coherent interactions

● Calculate as a function of |t|
diff

= |(p
ν
- p

μ
- p

π
)|2 = 2m

p
T

p

● Integrated ε
c/d

 ≈ 20%

Diffractive Pion Production Acceptance
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● No calculation of exclusive diffractive π production valid for W < 2 GeV

● Calculate diffractive dσ/d|t| using

– Inclusive ν
μ
 p → μ- π+ p calculation by Kopeliovich et al. based on Adler's relation

– GENIE to predict non-diffractive component

● From the diffractive dσ/d|t| and ε
c/d

, the diffractive event rate is 7% (4%) of the ν
μ
 (anti-ν

μ
) 

coherent event rate as predicted by GENIE

Diffractive Pion Production Estimate
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Diffractive Pion Production Search

Proton
Ionization

π+

μ-

p

MINERνA Data
ν

μ 
CC Diffractive Pion Production Candidate

Module Number
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tr

ip
 N
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m

b
er

Amongst the events passing all selection cuts, look for a large energy deposition in a 
single strip resulting from the recoil proton ionization near the event vertex

● ±2 planes and ±70 mm from the event vertex

● corresponds to the range of a T
p
 = 50 MeV proton (|t|

diff
= 2m

p
T

p
 ≈ 0.1 GeV2)
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Neutrino Diffractive Pion Production Search

● Diffractive MC sample:

– GENIE ν
μ
 p → μ- π+ p passing selection cuts

– weighted to the diffractive dσ/d|t| x ε
c/d

 shape

● Diffractive normalization α
diff

 = N
diff

 / N
coh

, where 

N
diff

 and N
coh

 are integrated diffractive and coherent 

simulated event rates

●  Plots show diffractive prediction for α
diff

 = 0.2

● Fit for α
diff

 in the max vertex strip energy (MVSE) 

region 16 < MVSE < 40 MeV

● α
diff

 = 0.00 ± 0.07 from fit

● α
diff

 = 0.07 from calculation
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Antineutrino Diffractive Pion Production Search

● Diffractive MC sample:

– GENIE ν
μ
 p → μ- π+ p passing selection cuts

– weighted to the diffractive dσ/d|t| x ε
c/d

 shape

● Diffractive norm α
diff

 defined as N
diff

= α
diff

N
coh

, 

where N
diff

 and N
coh

 are integrated diffractive and 

coherent simulated event rates

● Plots show diffractive prediction for α
diff

 = 0.2

● Fit for α
diff

 in the max vertex strip energy (MVSE) 

region 16 < MVSE < 40 MeV

● α
diff

 = −0.03 ± 0.07 from fit

● α
diff

 = 0.04 from calculation
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Backup
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ND280

● T2K's off-axis near detector

● Scintillator tracker with 
interleaved TPCs

● Upstream π0 detector (P0D)

● Side and downstream ECALs

● Constrain neutrino event 
rate/cross sections
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Flux at SK

T2K unoscillated neutrino flux 
prediction at SK
Phys.Rev. D91 (2015) 7, 072010
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Proton Score Calculation
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MINERνA Test Beam Proton Response
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