

Young Scientists Symposium The ATLAS Fast Track Trigger

Jordan Webster Feb. 16, 2016

What is the Fast Track Trigger?

FTK is a hardware upgrade to the ATLAS trigger system that will be used to reconstruct particle tracks at an event rate of 100 KHz

Outline...

- 1. Motivation
- 2. Design
- 3. Performance
- 4. Timeline & Future

Why FTK?

- The LHC is designed to create 40M collisions per second
- Each event O(1 MB)
- Saving every event would mean...
 - * ~1 library of congress per second
 - * ~2500 Wikipedias per second

Why FTK?

Solution: ATLAS has a multi-level trigger system designed to quickly identify events with useful physics

Reconstructing charged particle tracks in the trigger is very important... but challenging and slow

What is FTK?

- * Global track reconstruction at 100 KHz
 - * Passes (p_T , η , φ , d_0 , z_0 , hits, χ^2) to HLT
- * Frees up resources for more complicated HLT decisions
 - * b-tagging, τ's, track-MET

- Divide detector layers into coarse resolution "superstrips"
 - * 8 layers used for initial fit

- Divide detector layers into coarse resolution "super-strips"
 - * 8 layers used for initial fit
- * Hardware pattern matching, allow 1 missing layer

Pattern found!

- Divide detector layers into coarse resolution "super-strips"
 - * 8 layers used for initial fit
- * Hardware pattern matching, allow 1 missing layer
- Compute χ² with full resolution hits using fast linear approx
 - * "Guess" missing hits

- Divide detector layers into coarse resolution "super-strips"
 - * 8 layers used for initial fit
- * Hardware pattern matching, allow 1 missing layer
- Compute χ² with full resolution hits using fast linear approx
 - "Guess" missing hits
- Tracks with good χ² are extrapolated to 3 additional layers, track parameters computed with linear approx

 64 parallel pipelines each handling hits from different slices of the detector

12

- Clusters hit coordinates
- Sends clusters to the proper stream

 Organizes hits, sends superstrips to Associative memory for pattern matching

Auxiliary Card

Photos: <u>atlasftk.uchicago.edu/photos/</u>

- Core of the FTK system
- Performs pattern matching simultaneously for all hits in the detector slice

Associative Memory

Photos: atlasftk.uchicago.edu/photos/

(Cartoon by Jamie Saxon)

(Cartoon by Jamie Saxon)

Patterns are generated using clean, simulated muon tracks with p_T > 1 GeV

(Cartoon by Jamie Saxon)

(Cartoon by Jamie Saxon)

(Cartoon by Jamie Saxon)

Input superstrips

(Cartoon by Jamie Saxon)

A more realistic schematic...

* Receives matched patterns, computes χ² for each combination of full resolution hits in each pattern

Auxiliary Card

Photos: atlasftk.uchicago.edu/photos/

- Extrapolates to additional layers
- Computes helix parameters

Photos: <u>atlasftk.uchicago.edu/photos/</u>

- Restores global hit coordinates
- Formats tracks for ATLAS HLT

25

Full system occupies 7 racks, capable of 250B fits/second

Performance

	Resolution at 10 GeV					
рт	0.5 GeV					
η	0.0015					
ф	0.001					
d_0	0.06 mm					
Z ₀	0.25 mm					

- > 90% efficiency w.r.t. offline & good resolution
- ★ E.g. b-tagging: p_T thresholds can be lowered by >20 GeV for triggers identifying events with 4 jets with 2 b-tags
- * E.g. τ-tagging: Factor of >2 improvement in QCD background rejection for same ggH→τ_hτ_h efficiency

Timeline & Future

- Installation & hardware testing ongoing
- Initial installation will cover a slice of the detector, expected April 2016
- Full barrel coverage in late 2016
- Full detector (barrel+endcaps) in early 2017
- Full design specs for handling higher luminosity in 2018
- * Future...
 - Current system designed to operate until ~2022
 - Phase-II inner detector changes & higher luminosity will require upgrades, under investigation
 - Denser associative memory, more processing chips, etc...

Summary

- In ~1 year FTK will provide global tracking in the ATLAS trigger
- Broad physics potential:
 - Handling high pileup environments
 - * Allows lower trigger p_T thresholds
 - * Particularly for b's and τ's!
- * Will be even more important in Phase-II

Bonus Slides

More Performance Plots

Tau Triggers

b-Jet Triggers

Schedule

	IM	DF	AUX	AMB	AMchip ver.	SSB	FLIC	Milestones	Expected
A	4	1	1*	1	05	1	1*	Included in TDAQ	In progress
В	32*	8*	1*	1	05	1	1*	Included in TDAQ	In progress
3rd	128	32	16	1	06	1	2	Included in TDAQ	4/2016
4th	128	32	16	16	06	8	2	Full barrel (mu=40)	7/2016
5th	128	32	32	32	06	8	2	Full detector (mu=40)	2/2017
Final	128	32	128	128	06	32	2	TDR Specs	2018 / Lumi driven

Goals: integration within ATLAS during winter shutdown fully commission the system before AM06 are installed