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Type Ia Supernovae (SNe Ia): Standardizable Candles

‣ SNe Ia are thermonuclear explosions of carbon-oxygen white dwarfs

‣ Peak luminosity is related to both lightcurve width and color

‣ Calibrating the luminosity based on these empirical relations allows us to use SNe 

Ia as distance indicators and probe cosmology via the distance-redshift relation
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Type Ia supernova lightcurves

correct  widths×~3
~10%
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Type Ia Supernovae (SNe Ia): Cosmological Probes
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‣ Past surveys 
discovered tens to 
hundreds of SNe Ia


‣ Current and future 
surveys will find 
thousands and even 
hundreds of 
thousands more


‣ SN cosmology is 
becoming limited by 
systematic 
uncertainties rather 
than statistics:

1. Photometric 

calibration

2. Host galaxy 

correlations

Betoule et al. (2014) 
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The Importance of Host Galaxy Identification

‣ Host galaxy identification (“host 
matching”) is a crucial step for 
modern SN surveys

‣ The Dark Energy Survey (DES) is 
on track to discover ~3500 SNe Ia

‣ The upcoming Large Synoptic 
Survey Telescope (LSST) will 
discover ≫10K SNe Ia

‣ In the absence of SN spectroscopy 
to determine SN types, we rely 
mainly on host galaxy spectra to 
obtain redshifts which are used to 
photometrically type SNe
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DES: ~3500 
SNe Ia

LSST: ≫10K  
SNe Ia

LSST Corp.

T. Abbott, NOAO/AURA/NSF
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The Importance of Host Galaxy Identification: 
Photometric SN Classification

‣ By fitting the shape of 
the lightcurve, we can 
determine if the SN was 
Type Ia or other type

‣ Redshift of host galaxy 
(from spectrum of the 
host) greatly improves fit

‣ Only ~10% of our final 
sample of SNe Ia will be 
spectroscopically 
confirmed

‣ The majority rely on this 
method of photometric 
classification
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DES Year 1 SN Ia candidate fit 
using host galaxy redshift prior
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‣ In addition, SN luminosities 
are known to correlate with 
host galaxy properties

‣ The origin of this correlation 
is not yet understood, but 
cosmology analyses already 
use host galaxy properties 
to correct for SN 
luminosities

‣ Reliable identification of 
host galaxies is essential 
for cosmology and SN 
science
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The Importance of Host Galaxy Identification:  
Host Galaxy Correlations

345 SNe Ia 
from SDSS
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Method: Directional Light Radius (DLR)
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DLR = radius of a galaxy in the direction of the SN
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Method: Directional Light Radius (DLR)

‣ Search for galaxies within a 30″ radius of SN position
‣ Match SN to the galaxy that is nearest in units of galaxy radius (DLR)
‣ In this way, the separation distance is normalized by the apparent size 

of the galaxy
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DLR = radius of a galaxy in the direction of the SN

1.2 DLR 2.7 DLR
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Testing Host Matching with Simulations
‣ Using galaxy catalogs we can place simulated SN locations onto galaxies

• Mock catalog: MICECATv2.0 (Carretero et al. 2015)
• Real catalog: HST ACS General Catalog (Griffith et al. 2012)

‣ SN redshifts simulated to reproduce DES-like SN Ia redshift distribution
‣ SN positions placed such that they follow the light distribution of their host 

galaxies (Sérsic profiles)
‣ When matching, assume fiducial hostless SN rate of 5% to simulate 

magnitude-limited survey
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HOSTLESS:
After simulating 
SNe, perform a  
magnitude cut 
on catalog such 
that the faintest 
5% of hosts are 
removed
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Testing Host Matching with Simulations: Results
‣ DLR distance to nearby galaxies is computed from the galaxy coordinates, 

sizes, shapes, and orientations given in the catalog
‣ Nearest galaxy in DLR-space is designated as the host
‣ Since the true host is known, we can test the matching accuracy
‣ The DLR method performs with ~91% accuracy (we know the 5% hostless 

will be mismatched to galaxies brighter than the true host)
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Even if the incorrectly-matched host 
happens to have a similar redshift,…

… this is still a problem given what 
we know about SN-host correlations
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Improvements with Machine Learning

‣ We would like some way of quantifying 
the probability of a correct match for 
each SN, while also improving the 
matching accuracy, if possible

‣ After initial DLR matching algorithm, 
implement Random Forests for binary 
classification into {correct match, 
wrong match}

‣ Features of the SN-matched host pairs 
are used to train the classifier
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Improvements with Machine Learning: Results

‣ Applying the trained ML classifier to a validation set, we can obtain (for each 
SN-host match) the probability of a correct match

‣ Fixing the efficiency at 98%, we find that ML boosts the matching 
accuracy (purity) up to ~97%
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Next Steps

‣ This paper is headed for DES collaboration-wide review in a couple weeks
‣ A follow-up paper will focus specifically on SNe Ia and DES, including 

propagating the effects of host galaxy mismatches to photometric SN 
classification and biases on cosmological parameters

‣ Train the ML classifier on real DES galaxy catalogs so we can begin 
assigning ML probabilities to actual DES SNe

13
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EXTRA SLIDES
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Type Ia Supernova Progenitors

15

NASA/CXC/M.Weiss/Bad Astronomer

Single Degenerate

Double Degenerate

… OR BOTH?
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Comparing SN Simulations with Data
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Machine Learning: Definitions

‣ Efficiency = fraction of true 
correct matches recovered by 
the classifier 
• TP / (TP + FN)

‣ Purity = the accuracy with which 
objects are classified as correct 
matches 
• TP / (TP + FP)
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